Muscle Blood-Flow Dynamics at Exercise Onset

2006 ◽  
Vol 38 (10) ◽  
pp. 1811-1818 ◽  
Author(s):  
MICHAEL E. TSCHAKOVSKY ◽  
NATASHA R. SAUNDERS ◽  
KATHERINE A. WEBB ◽  
DENIS E. O'DONNELL
1996 ◽  
Vol 81 (4) ◽  
pp. 1619-1626 ◽  
Author(s):  
R. L. Hughson ◽  
J. K. Shoemaker ◽  
M. E. Tschakovsky ◽  
J. M. Kowalchuk

Hughson, R. L., J. K. Shoemaker, M. E. Tschakovsky, and J. M. Kowalchuk. Dependence muscle ofV˙o 2on blood flow dynamics at the onset of forearm exercise. J. Appl. Physiol. 81(4): 1619–1626, 1996.—The hypothesis that the rate of increase in muscle O2 uptake (V˙o 2 mus) at the onset of exercise is influenced by muscle blood flow was tested during forearm exercise with the arm either above or below heart level to modify perfusion pressure. Ten young men exercised at a power of ∼2.2 W, and five of these subjects also worked at 1.4 W. Blood flow to the forearm was calculated from the product of blood velocity and cross-sectional area obtained with Doppler techniques. Venous blood was sampled from a deep forearm vein to determine O2 extraction. The rate of increase inV˙o 2 musand blood flow was assessed from the mean response time (MRT), which is the time to achieve ∼63% increase from baseline to steady state. In the arm below heart position during the 2.2-W exercise, blood flow andV˙o 2 musboth increased, with a MRT of ∼30 s. With the arm above the heart at this power, the MRTs for blood flow [79.8 ± 15.7 (SE) s] and V˙o 2 mus(50.2 ± 4.0 s) were both significantly slower. Consistent with these findings were the greater increases in venous plasma lactate concentration over resting values in the above heart position (2.8 ± 0.4 mmol/l) than in the below heart position (0.9 ± 0.2 mmol/l). At the lower power, both blood flow andV˙o 2 musalso increased more rapidly with the arm below compared with above the heart. These data support the hypothesis that changes in blood flow at the onset of exercise have a direct effect on oxidative metabolism through alterations in O2transport.


2011 ◽  
Vol 300 (2) ◽  
pp. F319-F329 ◽  
Author(s):  
Niels-Henrik Holstein-Rathlou ◽  
Olga V. Sosnovtseva ◽  
Alexey N. Pavlov ◽  
William A. Cupples ◽  
Charlotte Mehlin Sorensen ◽  
...  

Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.


1990 ◽  
Vol 8 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Q. Guo ◽  
L. Friloux ◽  
O. Nalcioglu

The Analyst ◽  
2015 ◽  
Vol 140 (5) ◽  
pp. 1432-1437 ◽  
Author(s):  
Shantimoy Kar ◽  
Monika Dash ◽  
Tapas Kumar Maiti ◽  
Suman Chakraborty

We investigate blood flow dynamics on a rotationally actuated lab-on-a-compact disk (LOCD) platform, as a function of the hematocrit level of the blood sample.


1989 ◽  
Vol 246 (3) ◽  
pp. 147-150 ◽  
Author(s):  
M. Kawakami ◽  
K. Makimoto ◽  
T. Nakajima ◽  
H. Takahashi

2018 ◽  
Vol 373 (1759) ◽  
pp. 20170330 ◽  
Author(s):  
Katherine Courchaine ◽  
Sandra Rugonyi

Blood flow conditions (haemodynamics) are crucial for proper cardiovascular development. Indeed, blood flow induces biomechanical adaptations and mechanotransduction signalling that influence cardiovascular growth and development during embryonic stages and beyond. Altered blood flow conditions are a hallmark of congenital heart disease, and disrupted blood flow at early embryonic stages is known to lead to congenital heart malformations. In spite of this, many of the mechanisms by which blood flow mechanics affect cardiovascular development remain unknown. This is due in part to the challenges involved in quantifying blood flow dynamics and the forces exerted by blood flow on developing cardiovascular tissues. Recent technologies, however, have allowed precise measurement of blood flow parameters and cardiovascular geometry even at early embryonic stages. Combined with computational fluid dynamics techniques, it is possible to quantify haemodynamic parameters and their changes over development, which is a crucial step in the quest for understanding the role of mechanical cues on heart and vascular formation. This study summarizes some fundamental aspects of modelling blood flow dynamics, with a focus on three-dimensional modelling techniques, and discusses relevant studies that are revealing the details of blood flow and their influence on cardiovascular development. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.


Sign in / Sign up

Export Citation Format

Share Document