The Effects of Exposed Body Hair on Air Displacement Plethysmography Body Composition Measurement

2016 ◽  
Vol 48 ◽  
pp. 998
Author(s):  
David A. Frietz ◽  
Joel D. Reece
Nutrition ◽  
2019 ◽  
Vol 60 ◽  
pp. 227-229 ◽  
Author(s):  
Outi Pellonperä ◽  
Ella Koivuniemi ◽  
Tero Vahlberg ◽  
Kati Mokkala ◽  
Kristiina Tertti ◽  
...  

2021 ◽  
Vol 5 (7) ◽  
Author(s):  
Dana F J Yumani ◽  
Harrie N Lafeber ◽  
Mirjam M van Weissenbruch

Abstract Context There are concerns that a higher fat mass in the early life of preterm infants is associated with adverse cardiometabolic outcomes in young adulthood. Objective To investigate the role of IGF-I and growth in determining body composition of preterm infants at term equivalent age. Methods An observational study was conducted from August 2015 to August 2018. From birth to term equivalent age, IGF-I levels were measured bi-weekly and growth was assessed weekly. At term equivalent age, body composition was assessed through air displacement plethysmography; 65 infants with a gestational age of 24 to 32 weeks were assessed at term equivalent age, of whom 58 completed body composition measurement. The main outcome measures were fat (free) mass (g) and fat (free) mass percentage at term equivalent age. Results In the first month of life, each 0.1 nmol/L per week increase in IGF-I was associated with a 465 g (SE 125 g) increase in fat free mass. A greater increase in weight SDS in the first month of life was associated with a higher fat free mass percentage (B 200.9; 95% CI, 12.1-389.6). A higher head circumference SDS was associated with more fat free mass (r = 0.46; 95% CI, 0.21-0.65). However, a greater increase in weight SDS up to term equivalent age was associated with a lower fat free mass percentage (B −55.7, SE 9.4). Conclusion These findings suggest that impaired growth in the first month of life is associated with a less favorable body composition at term equivalent age.


1998 ◽  
Vol 85 (1) ◽  
pp. 238-245 ◽  
Author(s):  
R. T. Withers ◽  
J. LaForgia ◽  
R. K. Pillans ◽  
N. J. Shipp ◽  
B. E. Chatterton ◽  
...  

This study compared the traditional two-compartment (fat mass or FM; fat free mass or FFM) hydrodensitometric method of body composition measurement, which is based on body density, with three (FM, total body water or TBW, fat free dry mass)- and four (FM, TBW, bone mineral mass or BMM, residual)-compartment models in highly trained men ( n = 12), sedentary men ( n = 12), highly trained women ( n = 12), and sedentary women ( n = 12). The means and variances for the relative body fat (%BF) differences between the two- and three-compartment models [2.2 ± 1.6 (SD) % BF; n = 48] were significantly greater ( P ≤ 0.02) than those between the three- and four-compartment models (0.2 ± 0.3% BF; n = 48) for all four groups. The three-compartment model is more valid than the two-compartment hydrodensitometric model because it controls for biological variability in TBW, but additional control for interindividual variability in BMM via the four-compartment model achieves little extra accuracy. The combined group ( n = 48) exhibited greater ( P < 0.001) FFM densities (1.1075 ± 0.0049 g/cm3) than the hydrodensitometric assumption of 1.1000 g/cm3, which is based on analyses of three male cadavers aged 25, 35, and 46 yr. This was primarily because their FFM hydration (72.4 ± 1.1%; n = 48) was lower ( P ≤ 0.001) than the hydrodensitometric assumption of 73.72%.


Sign in / Sign up

Export Citation Format

Share Document