scholarly journals IGF-I, Growth, and Body Composition in Preterm Infants up to Term Equivalent Age

2021 ◽  
Vol 5 (7) ◽  
Author(s):  
Dana F J Yumani ◽  
Harrie N Lafeber ◽  
Mirjam M van Weissenbruch

Abstract Context There are concerns that a higher fat mass in the early life of preterm infants is associated with adverse cardiometabolic outcomes in young adulthood. Objective To investigate the role of IGF-I and growth in determining body composition of preterm infants at term equivalent age. Methods An observational study was conducted from August 2015 to August 2018. From birth to term equivalent age, IGF-I levels were measured bi-weekly and growth was assessed weekly. At term equivalent age, body composition was assessed through air displacement plethysmography; 65 infants with a gestational age of 24 to 32 weeks were assessed at term equivalent age, of whom 58 completed body composition measurement. The main outcome measures were fat (free) mass (g) and fat (free) mass percentage at term equivalent age. Results In the first month of life, each 0.1 nmol/L per week increase in IGF-I was associated with a 465 g (SE 125 g) increase in fat free mass. A greater increase in weight SDS in the first month of life was associated with a higher fat free mass percentage (B 200.9; 95% CI, 12.1-389.6). A higher head circumference SDS was associated with more fat free mass (r = 0.46; 95% CI, 0.21-0.65). However, a greater increase in weight SDS up to term equivalent age was associated with a lower fat free mass percentage (B −55.7, SE 9.4). Conclusion These findings suggest that impaired growth in the first month of life is associated with a less favorable body composition at term equivalent age.

2019 ◽  
Vol 109 (5) ◽  
pp. 1353-1360 ◽  
Author(s):  
Tom Norris ◽  
Sara E Ramel ◽  
Patrick Catalano ◽  
Carol ni Caoimh ◽  
Paola Roggero ◽  
...  

ABSTRACT Background Air-displacement plethysmography (ADP) is a good candidate for monitoring body composition in newborns and young infants, but reference centile curves are lacking that allow for assessment at birth and across the first 6 mo of life. Objective Using pooled data from 4 studies, we aimed to produce new charts for assessment according to gestational age at birth (30 + 1 to 41 + 6 wk) and postnatal age at measurement (1–27 wk). Methods The sample comprised 222 preterm infants born in the United States who were measured at birth; 1029 term infants born in Ireland who were measured at birth; and 149 term infants born in the United States and 57 term infants born in Italy who were measured at birth, 1 and 2 wk, and 1, 2, 3, 4, 5, and 6 mo of age. Infants whose birth weights were <3rd or >97th centile of the INTERGROWTH-21st standard were excluded, thereby ensuring that the charts depict body composition of infants whose birth weights did not indicate suboptimal fetal growth. Sex-specific centiles for fat mass (kg), fat-free mass (kg), and percentage body fat were estimated using the lambda-mu-sigma (LMS) method. Results For each sex and measure (e.g., fat mass), the new charts comprised 2 panels. The first showed centiles according to gestational age, allowing term infants to be assessed at birth and preterm infants to be monitored until they reached term. The second showed centiles according to postnatal age, allowing all infants to be monitored to age 27 wk. The LMS values underlying the charts were presented, enabling researchers and clinicians to convert measurements to centiles and z scores. Conclusions The new charts provide a single tool for the assessment of body composition, according to ADP, in infants across the first 6 mo of life and will help enhance early-life nutritional management.


1998 ◽  
Vol 85 (1) ◽  
pp. 238-245 ◽  
Author(s):  
R. T. Withers ◽  
J. LaForgia ◽  
R. K. Pillans ◽  
N. J. Shipp ◽  
B. E. Chatterton ◽  
...  

This study compared the traditional two-compartment (fat mass or FM; fat free mass or FFM) hydrodensitometric method of body composition measurement, which is based on body density, with three (FM, total body water or TBW, fat free dry mass)- and four (FM, TBW, bone mineral mass or BMM, residual)-compartment models in highly trained men ( n = 12), sedentary men ( n = 12), highly trained women ( n = 12), and sedentary women ( n = 12). The means and variances for the relative body fat (%BF) differences between the two- and three-compartment models [2.2 ± 1.6 (SD) % BF; n = 48] were significantly greater ( P ≤ 0.02) than those between the three- and four-compartment models (0.2 ± 0.3% BF; n = 48) for all four groups. The three-compartment model is more valid than the two-compartment hydrodensitometric model because it controls for biological variability in TBW, but additional control for interindividual variability in BMM via the four-compartment model achieves little extra accuracy. The combined group ( n = 48) exhibited greater ( P < 0.001) FFM densities (1.1075 ± 0.0049 g/cm3) than the hydrodensitometric assumption of 1.1000 g/cm3, which is based on analyses of three male cadavers aged 25, 35, and 46 yr. This was primarily because their FFM hydration (72.4 ± 1.1%; n = 48) was lower ( P ≤ 0.001) than the hydrodensitometric assumption of 73.72%.


Author(s):  
Dana F. J. Yumani ◽  
Dide de Jongh ◽  
Harrie N. Lafeber ◽  
Mirjam M. van Weissenbruch

Abstract The aim of this study was to compare whole body composition, generated by air displacement plethysmography (ADP) and dual-energy X-ray absorptiometry (DXA), and to evaluate the potential predictive value of the sum of skinfolds (∑SFT) for whole body composition, in preterm infants at term equivalent age. A convenience sample of sixty-five preterm infants with a mean (SD) gestational age of 29 (1.6) weeks was studied at term equivalent age. Fat mass measured by DXA and ADP were compared and the ability of the ∑SFT to predict whole body fat mass was investigated. There was poor agreement between fat mass percentage measured with ADP compared with DXA (limits of agreement: − 4.8% and 13.7%). A previously modeled predictive equation with the ∑SFT as a predictor for absolute fat mass could not be validated. Corrected for confounders, the ∑SFT explained 42% (ADP, p = 0.001) and 75% (DXA, p = 0.001) of the variance in fat mass percentage. Conclusions: The ∑SFT was not able to accurately predict fat mass and ADP and DXA did not show comparable results. It remains to be elucidated whether or not DXA provides more accurate assessment of whole body fat mass than ADP in preterm infants. Trial registration: NTR5311 What is Known:• Diverse methods are used to assess fat mass in preterm infants. What is New:• This study showed that there is poor agreement between dual-energy X-ray absorptiometry, air displacement plethysmography, and skinfold thickness measurements.• Our results affirm the need for consensus guidelines on how to measure fat mass in preterm infants, to improve the assimilation of data from different studies and the implementation of the findings from those studies.


Nutrition ◽  
2019 ◽  
Vol 60 ◽  
pp. 227-229 ◽  
Author(s):  
Outi Pellonperä ◽  
Ella Koivuniemi ◽  
Tero Vahlberg ◽  
Kati Mokkala ◽  
Kristiina Tertti ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4205
Author(s):  
Christoph Binder ◽  
Julia Buchmayer ◽  
Alexandra Thajer ◽  
Vito Giordano ◽  
Victor Schmidbauer ◽  
...  

Postnatal growth restriction and deficits in fat-free mass are associated with impaired neurodevelopment. The optimal body composition to support normal brain growth and development remains unclear. This study investigated the association between body composition and brain size in preterm infants. We included 118 infants born <28 weeks of gestation between 2017–2021, who underwent body composition (fat-free mass (FFM) and fat mass (FM)) and cerebral magnetic resonance imaging to quantify brain size (cerebral biparietal diameter (cBPD), bone biparietal diameter (bBPD), interhemispheric distance (IHD), transverse cerebellar diameter (tCD)) at term-equivalent age. FFM Z-Score significantly correlated with higher cBPD Z-Score (rs = 0.69; p < 0.001), bBPD Z-Score (rs = 0.48; p < 0.001) and tCD Z-Score (rs = 0.30; p = 0.002); FM Z-Score significantly correlated with lower brain size (cBPD Z-Score (rs = −0.32; p < 0.001) and bBPD Z-Score (rs = −0.42; p < 0.001). In contrast weight (rs = 0.08), length (rs = −0.01) and head circumference Z-Score (rs = 0.14) did not. Linear regression model adjusted for important neonatal variables revealed that FFM Z-Score was independently and significantly associated with higher cBPD Z-Score (median 0.50, 95% CI: 0.59, 0.43; p < 0.001) and bBPD Z-Score (median 0.31, 95% CI: 0.42, 0.19; p < 0.001); FM Z-Score was independently and significantly associated with lower cBPD Z-Score (median −0.27, 95% CI: −0.42, −0.11; p < 0.001) and bBPD Z-Score (median −0.32, 95% CI: −0.45, −0.18; p < 0.001). Higher FFM Z-Score and lower FM Z-scores were significantly associated with larger brain size at term-equivalent age. These results indicate that early body composition might be a useful tool to evaluate and eventually optimize brain growth and neurodevelopment.


Sign in / Sign up

Export Citation Format

Share Document