scholarly journals Work Rate Decrease At A Fixed Heart Rate To Evaluate Exercise Tolerance In Microgravity

2021 ◽  
Vol 53 (8S) ◽  
pp. 104-104
Author(s):  
Giovanni Baldassarre ◽  
Lucrezia Zuccarelli ◽  
Giorgio Manferdelli ◽  
Valentina Manfredini ◽  
Letizia Rasica ◽  
...  
Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Stacy T Sims ◽  
Sandra Tsai ◽  
Marcia L Stefanick

Background: Barriers to physical activity for obese women include overheating, sweating, fatigue, exhaustion, and rapid heart rate. Adipose tissue acts as a thermal insulator, promoting a greater heat load on the nonfat tissues, reducing heat tolerance; exercise causes a rise in body temperature with an inability to dissipate heat contributing to reduced exercise tolerance. With difficulties of thermoregulation in the sedentary obese population, the aspect of attenuating the discomfort thus associated may encourage continuation of exercise. A heat sink applied to palmar surfaces extracts heat and cools the venous blood, reducing thermal strain by enhancing the volume of cooled venous return. We hypothesized that palmar cooling using a rapid thermal exchange device (RTX) during exercise would attenuate the thermal discomfort of exercise of sedentary obese women, improving exercise tolerance. Methods: To examine whether palmar cooling would impact exercise tolerance in obese women, 24 healthy women aged 30–45 years, with no history of long term structured exercise, a body mass of 120–135% above ideal and/or BMI between 30 and 34.9 were recruited. Women were randomized into a cooling (RXT with 16°C water circulating) or a control (RTX with 37°C water circulating) group and attended 3 exercise sessions a week for 3-months (12 weeks). Each session was comprised of 10 min body weight exercises, 25–45 min treadmill walking at 70–85% HRR with the RTX device, and 10 min of core strengthening exercises. The performance marker was a 1.5 mi walk for time; conducted on the first and last days of the intervention. Mixed models were used to model each of the outcomes as a function of thermal strain, time and treatment with covariates of speed, heart rate, distance, and the interaction of the main effects included in the model. Results: Groups were matched at baseline for key variables (time for 1.5 mile walk test, resting and exercising heart rate [HR], blood pressure [BP], waist circumference [WC], body weight, body mass index [BMI]). Among the cooling group, time to complete the 1.5mile walk test was significantly faster (31.6 ± 2.3 vs. 24.6 ± 2.5 min, pre vs. post, P< 0.01). A greater average exercising HR was observed (136 vs. 154 bpm, pre vs. post, P <0.001), with a significant reduction in WC (41.8 ± 3.1 vs. 39.1 ± 2.2 inches, pre vs. post, P< 0.01) and resting BP (139/84 ± 124/70 mmHg, pre vs. post, P < 0.025). There were no significant differences observed in the control group. Conclusion: Results indicate that exercise tolerance in obese women improved with cooling during exercise, more so than those women who did not have cooling. An improvement in blood pressure, heart rate, waist circumference, and overall aerobic fitness was observed. These findings suggest that by reducing thermal discomfort during exercise, tolerance increases, thus improving cardiovascular parameters of obese women.


1981 ◽  
Vol 50 (4) ◽  
pp. 772-778 ◽  
Author(s):  
V. Schmidt ◽  
K. Bruck

Twelve subjects exercised to exhaustion at an ambient temperature of 18 degrees C on a bicycle ergometer with the load being stepwise increased. On one day, exercise was preceded by a precooling maneuver. In the precooling tests, deep body temperature attained values of about 1 degree C lower than in the control tests. There was no indication of metabolic cold defense reactions being evoked throughout the exercise period. In the precooling tests, heart rate was significantly lower than in the controls, but the mean maximum work rate, peak oxygen uptake (VO2), time to exhaustion, and total work were not reduced, i.e., work rate and VO2 were increased for a given heart rate. In the three subjects with the lowest maximum work rates, total work and exhaustion time and, in two cases, maximum work rate were increased after precooling. The onset of sweating occurred at higher work rates but at lower core, mean skin, and mean body temperature after precooling. However, the accumulated sweat secretion was considerably smaller after precooling, indicating less thermoregulatory effort.


1965 ◽  
Vol 20 (2) ◽  
pp. 263-266 ◽  
Author(s):  
Ernest D. Michael ◽  
Steven M. Horvath

Maximal exercise tolerance tests were given to 30 female subjects 17-22 years old. The test consisted of exercising 1 min at a work load of 300 kpm/min and increasing the work load 150 kpm/min each minute until the subject could no longer exercise. The maximal heart rate level averaged 184 beat/min with a range between 170 and 202 beat/min. The average maximal Vo2 was 1.78 liter/min or 29.8 ml/kg per min. The submaximal ventilatory measurements were similar for all subjects while the heart rate levels at the submaximal work loads differentiated the subjects when grouped according to maximal work-load capacities. Prediction of maximal work capacity could not be made for individuals from any single submaximal measurement. There was .56 correlation between body weight and maximal work capacity with only a .32 relationship between maximal Vo2 and Vo2 per kilogram body weight. exercise tolerance of women; cardiorespiratory function of women during exercise; submaximal cardiorespiratory response; maximal cardiorespiratory measurements of women; response to maximal exercise; prediction of exercise tolerance Submitted on May 5, 1964


Sign in / Sign up

Export Citation Format

Share Document