scholarly journals Effect of the installation of a baffle plate near the inlet on the thermal storage performance of a cylindrical water tank.

1991 ◽  
Vol 17 (1) ◽  
pp. 194-200
Author(s):  
Osamu Miyatake ◽  
Kazuaki Fujita ◽  
Kozo Kibashi
2017 ◽  
Vol 9 (10) ◽  
pp. 168781401772407 ◽  
Author(s):  
Ling Xie ◽  
Yifei Lv ◽  
Jun Lu ◽  
Yongcai Li ◽  
Shuli Liu ◽  
...  

2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2525-2532 ◽  
Author(s):  
Shailendra Kumar ◽  
Kishan Kumar

The present study explores suitability of two phase change materials (PCM) for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.


2019 ◽  
Vol 6 (9) ◽  
pp. 095514
Author(s):  
Zhenyi Li ◽  
Dong Zhong ◽  
Hao Zhou ◽  
Qinglin Cai ◽  
Ying Liu ◽  
...  

2019 ◽  
Vol 111 ◽  
pp. 06014
Author(s):  
Andrew Lyden ◽  
Paul Tuohy

Decentralised energy systems provide the potential for adding energy system flexibility by separating demand/supply dynamics with demand side management and storage technologies. They also offer an opportunity for implementing technologies which enable sector coupling benefits, for example, heat pumps with controls set to use excess wind power generation. Gaps in this field relating to planning-level modelling tools have previously been identified: thermal characteristic modelling for thermal storage and advanced options for control. This paper sets out a methodology for modelling decentralised energy systems including heat pumps and thermal storage with the aim of assisting planning-level design. The methodology steps consist of: 1) thermal and electrical demand and local resource assessment methods, 2) energy production models for wind turbines, PV panels, fuel generators, heat pumps, and fuel boilers, 3) bi-directional energy flow models for simple electrical storage, hot water tank thermal storage with thermal characteristics, and a grid-connection, 4) predictive control strategy minimising electricity cost using a 24-hour lookahead, and 5) modelling outputs. Contributions to the identified gaps are examined by analysing the sensible thermal storage model with thermal characteristics and the use of the predictive control. Future extensions and applications of the methodology are discussed.


2020 ◽  
Vol 12 (13) ◽  
pp. 5281
Author(s):  
Thomas Wüest ◽  
Lars O. Grobe ◽  
Andreas Luible

A novel façade element is presented that forms a symbiosis between an enhanced box-type window, a closed cavity façade, and a Trombe wall. This hybrid, transparent-opaque façade element features an absorbing water tank, that is installed behind a controlled shading device toward the cavity of a non-ventilated Double Skin Façade in the parapet section. To evaluate the potential impact on building performance, a transient simulation model is developed in Modelica and calibrated by comparison with measurements on a prototype. The effect of the absorbing thermal storage on heat transfers under solar radiation is analyzed in comparison to (i) conditions excluding solar radiation and (ii) an empty tank. An evaluation for four European cities demonstrates that the annual heating demand can be reduced by more than 4.2% and cooling demand by at least 6.6% compared to a façade without thermal storage. The effect is explained not only by the increased thermal mass, but also by the effective modulation of solar gains by the controlled absorbing storage. The dampening of heat flow fluctuations and the control of solar gains is a promising means to reduce the installed power of HVAC (heating/ventilating/air conditioning) installations.


Sign in / Sign up

Export Citation Format

Share Document