Analogy-Based Evaluation of Heat and Mass Transfer Characteristics in a Falling Liquid Film along a Vertical Absorber with Spirally Wound Fir-Finned Tube

2006 ◽  
Vol 32 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Kazushige Nakao ◽  
Eiichi Ozaki ◽  
Tsuneo Yumikura ◽  
Masaki Ikeuchi ◽  
Goro Yamanaka ◽  
...  
2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


2001 ◽  
Author(s):  
Y. H. Kim ◽  
Y. J. Park ◽  
Y. C. Kim ◽  
S. C. Shim ◽  
S. K. Oh ◽  
...  

Abstract An experimental study was performed to investigate the heat and mass transfer characteristics of a finned-tube evaporator coil utilized in a domestic refrigerator under frosting conditions. Airside heat transfer coefficient was measured as a function of air temperature, humidity ratio, air velocity, and evaporating temperature. In addition, frost thickness was monitored and measured by visualization tests during frosting operation. Based on the experimental results, the degradation of heat transfer performance due to frost formation was explored as a function of operating parameters. The rate of frost formation on the evaporator increases at relatively high humidity, high airflow rate, low inlet air temperature and low refrigerant temperature. As the frost thickness increases, airflow rate gradually decreases, while the capacity increases at the early stage of frost formation and then significantly drops.


Author(s):  
Monssif Najim ◽  
M'barek Feddaoui ◽  
Abderrahman Nait Alla ◽  
Adil Charef

This chapter presents a numerical investigation of heat and mass transfer characteristics during the evaporation of liquid films in vertical geometries. A two-phase model is developed to simulate laminar film evaporation into laminar gas flow. The liquid film evaporation is evaluated under adiabatic and heated wall conditions for both pure and binary liquid film. The model is based on a finite difference method to solve the governing equations of the two phases. The obtained results concerns two industrial processes. The first part of the chapter is devoted to the analysis of the thermal protection of vertical channel wall, while the second part is devoted to the desalination process by falling liquid film. The simulations results allowed the determination of the optimal operating conditions for both processes.


2012 ◽  
Vol 47 (5) ◽  
pp. 735-741
Author(s):  
Norihiro Inoue ◽  
Hisaya Omote ◽  
Kazuhide Watanabe

2006 ◽  
Vol 32 (6) ◽  
pp. 484-493
Author(s):  
Kazushige Nakao ◽  
Eiichi Ozaki ◽  
Tsuneo Yumikura ◽  
Masaki Ikeuchi ◽  
Goro Yamanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document