scholarly journals Vascular Reactivity to Various Vasoconstrictor Agents and Endothelium-Dependent Relaxations of Rat Thoracic Aorta in the Long-Term Period of Pinealectomy

2006 ◽  
Vol 101 (4) ◽  
pp. 329-334 ◽  
Author(s):  
Zehra Kurcer ◽  
Engin Sahna ◽  
Ercument Olmez
Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1467
Author(s):  
Rafaela Teixeira ◽  
Talita Menengat ◽  
Gabriel Andrade ◽  
Bruno Cotrim ◽  
Cristiano Ponte ◽  
...  

Quinazolinones have pharmacological effects on vascular reactivity through different mechanisms. We synthesized 4-phenylquinazolin-2(1H)-one derivatives under microwave irradiation and tested them on the rat thoracic aorta. The prepared compounds 2a–2f were obtained in about 1 h with suitable yields (31–92%). All derivatives produced vasorelaxant effects with IC50 values ranging from 3.41 ± 0.65 µM to 39.72 ± 6.77 µM. Compounds 2c, 2e and 2f demonstrated the highest potency in endothelium-intact aorta rings (IC50 4.31 ± 0.90 µM, 4.94 ± 1.21 µM and 3.41 ± 0.65 µM respectively), and they achieved around 90% relaxation (30 μM). In aorta rings without an endothelium, the effect of compound 2f was abolished. Using the MTT assay to test for cell viability, only compound 2b induced cytotoxicity at the maximum concentration employed (30 µM). The results show that vasorelaxation by 4-phenylquinazolin-2(1H)-one derivatives might depend on the activation of a signalling pathway triggered by endothelium-derived factors.


2001 ◽  
Vol 91 (6) ◽  
pp. 2602-2610 ◽  
Author(s):  
John N. Stallone ◽  
Ronald L. Salisbury ◽  
Clifford T. Fulton

Contractions of rat thoracic aorta to vasopressin (VP) are threefold higher in females (F) than in males (M), primarily because nitric oxide (NO) attenuation of contraction is greater in M. To determine the role of the androgen receptor (AR) in this mechanism, vascular reactivity to VP was examined in thoracic aorta of the testicular-feminized male (Tfm) rat, which has an X-linked, recessive defect in AR function in affected M. Maximal contraction of normal aortas to VP was fourfold higher in F (4,128 ± 291 mg/mg ring wt) than in M (971 ± 133 mg); maximal response of Tfm (3,967 ± 253 mg) was similar to that of normal F. N G-nitro-l-arginine methyl ester increased maximal response to VP threefold in M but had no effect in F or Tfm. In contrast, maximal contraction of normal aortas to phenylephrine was 43% higher in M (4,011 ± 179 mg) than in F (2,809 ± 78 mg); maximal response of Tfm (2,716 ± 126 mg) was similar to that of normal F. N G-nitro-l-arginine methyl ester increased maximal response to phenylephrine by >50% in F and Tfm but had no effect in M. Maximal contractile response to 80 mM KCl did not differ among M, F, or Tfm. Thus androgens and normal vascular AR function are important in the greater NO-mediated attenuation of reactivity to VP in M than in F rat aorta, which may involve specific modulation of endothelial VP signal transduction pathways and NO release by androgens. These data also establish the importance of the Tfm rat as a model to study the effects of androgens on cardiovascular function.


2010 ◽  
Vol 30 (2) ◽  
pp. 616-622
Author(s):  
Zehra KURÇER ◽  
Feral ÖZTÜRK ◽  
Engin ŞAHNA ◽  
Meltem KURUŞ ◽  
Ercüment ÖLMEZ

Sign in / Sign up

Export Citation Format

Share Document