Laser Ion Kinetics: Dynamics of Intramolecular Reactions in Substituted Benzalacetones

2000 ◽  
Vol 6 (2) ◽  
pp. 143-152 ◽  
Author(s):  
R. Heinicke ◽  
C. Grun ◽  
J. Grotemeyer

Measurements of a single shot femtosecond laser pump-probe technique on substituted benzalacetones are reported. The technique is based on counter propagating femtosecond laser pulses in a supersonic beam of low density of sample molecules and simultaneous probe detection by ion or fragment ion formation through a reflectron time-of-flight mass spectrometer. It will be shown that the range of the pump-probe delays covers the time span between 100 fs and 10 ps depending on the pulse width of the laser used and the stability of the voltages of the mass spectrometer. The application of this technique to medium-sized organic molecules reveals some insight into the electron transfer process during ionisation through a 1 + 1 multi-photon absorption procedure. Furthermore it is demonstrated that this technique is also applicable to the investigation of ultra-fast isomerisation and fragmentation processes.

2013 ◽  
Vol 205-206 ◽  
pp. 358-363 ◽  
Author(s):  
Philipp Saring ◽  
Anna Lena Baumann ◽  
Stefan Kontermann ◽  
Wolfgang Schade ◽  
Michael Seibt

This paper investigates the influence of different number of laser pulses on contact behavior and conductivity of the surface layer of femtosecond laser microstructured, sulfur-doped silicon. Single shot laser processed silicon (Pink Silicon) is characterized by low surface roughness, whereas five shot laser processed silicon (Grey Silicon) has an elevated sulfur content with a surface roughness low enough to maintain good contacting. To laterally confine the laser induced pn-junction part of the Grey Silicon sample surface is etched off. The etching depth is confirmed to be sufficient to completely remove the active n-type sulfur layer. While Pink Silicon shows little or no lateral conductivity within the laser processed layer, Grey Silicon offers acceptable conductivity, just as expected by the fact of having incorporated a higher sulfur dopant content. Recombination dominates the irradiated regions of Pink Silicon and suppresses excess charge carrier collection. Grey Silicon, while showing sufficient lateral conductivity, still shows regions of lower conductivity, most likely dominated by the laser irradiation-induced formation of dislocations. According to our results, the optimum laser pulse number for electrical and structural properties is expected to be in the range between one and five laser pulses.


Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 99
Author(s):  
Zhengquan Fan ◽  
Xiang Zhang ◽  
Qi Lu ◽  
Yu Luo ◽  
Qingqing Liang ◽  
...  

Nitrogen ions pumped by intense femtosecond laser pulses present an optical gain at 391.4 nm, evident by energy amplification of an injected resonant seeding pulse. We report a time-resolved measurement of the amplification process with seeding pulses having varying intensities. It is found that the amplification factor depends on the intensity of the seeding pulse and the effective temporal window for the optical gain becomes longer by applying more intense seeding pulses. These two features are in sharp contrast with classic pump-probe experiments, pinpointing the crucial role of macroscopic coherence and its dynamics during the lasing process. We further measure the temporal profile of the amplified emission for seeding pulse injected at different time delays. A complicated temporal behavior is observed, which highlights the nature of the superfluorescence.


JETP Letters ◽  
2019 ◽  
Vol 109 (6) ◽  
pp. 382-386 ◽  
Author(s):  
S. I. Kudryashov ◽  
P. A. Danilov ◽  
S. G. Bezhanov ◽  
A. A. Rudenko ◽  
A. A. Ionin ◽  
...  

Author(s):  
Chunlei Guo

In this paper, we systematically study the generation and propagation of coherent acoustic pulses in a metal-dielectric system using a two-color femtosecond pump-probe technique at different probe angles. A long-lived acoustic oscillation is observed in a borosilicate glass coated with gold and shows different attenuation and amplitude at different probe wavelength. Our study suggests that the two-color optical pump-probe technique can be utilized as a noninvasive tool to study acoustic properties of dielectric materials.


1999 ◽  
Author(s):  
Hidetoshi Nakano ◽  
Yoshinori Goto ◽  
Pelxiang Lu ◽  
Tadashi Nishikawa ◽  
Naoshl Uesugi

2008 ◽  
Vol 53 (5) ◽  
pp. 681-686 ◽  
Author(s):  
Feng Zhang ◽  
ZhengRong Wei ◽  
ZhenZhou Cao ◽  
ChangHua Zhang ◽  
Bing Zhang

Sign in / Sign up

Export Citation Format

Share Document