scholarly journals An outlook: machine learning in hyperspectral image classification and dimensionality reduction techniques

Author(s):  
Tatireddy Reddy ◽  
Jonnadula Harikiran

Hyperspectral imaging is used in a wide range of applications. When used in remote sensing, satellites and aircraft are employed to collect the images, which are used in agriculture, environmental monitoring, urban planning and defence. The exact classification of ground features in the images is a significant research issue and is currently receiving greater attention. Moreover, these images have a large spectral dimensionality, which adds computational complexity and affects classification precision. To handle these issues, dimensionality reduction is an essential step that improves the performance of classifiers. In the classification process, several strategies have produced good classification results. Of these, machine learning techniques are the most powerful approaches. As a result, this paper reviews three different types of hyperspectral image machine learning classification methods: cluster analysis, supervised and semi-supervised classification. Moreover, this paper shows the effectiveness of all these techniques for hyperspectral image classification and dimensionality reduction. Furthermore, this review will assist as a reference for future research to improve the classification and dimensionality reduction approaches.

2020 ◽  
Vol 16 (11) ◽  
pp. 155014772096846
Author(s):  
Jing Liu ◽  
Yulong Qiao

Spectral dimensionality reduction is a crucial step for hyperspectral image classification in practical applications. Dimensionality reduction has a strong influence on image classification performance with the problems of strong coupling features and high band correlation. To solve these issues, we propose the Mahalanobis distance–based kernel supervised machine learning framework for spectral dimensionality reduction. With Mahalanobis distance matrix–based dimensional reduction, the coupling relationship between features and the elimination of the scale effect are removed in low-dimensional feature space, which benefits the image classification. The experimental results show that compared with other methods, the proposed algorithm demonstrates the best accuracy and efficiency. The Mahalanobis distance–based multiples kernel learning achieves higher classification accuracy than the Euclidean distance kernel function. Accordingly, the proposed Mahalanobis distance–based kernel supervised machine learning method performs well with respect to the spectral dimensionality reduction in hyperspectral imaging remote sensing.


Sign in / Sign up

Export Citation Format

Share Document