Cell counts in peripheral blood and bone marrow of male C.B-17 scid/scid mice

1995 ◽  
Vol 29 (2) ◽  
pp. 218-222 ◽  
Author(s):  
Kiyoshi Matsumoto ◽  
Shin-ichi Inukai ◽  
Tetsuo Isaka ◽  
Norisato Aruga ◽  
Shunji Nakamura ◽  
...  

Blood cell and bone marrow cell counts were carried out for male C.B-l7 scid/scid (SCID) mice aged 3, 6, 9, 18 and 26 weeks and the values were compared with those in C.B-17+/+(C.B-17) mice. In the peripheral blood, SCID mice had markedly low numbers of leucocytes and lymphocytes throughout the study. In the bone marrow, SCID mice had relatively low levels of erythroblasts at an early age, low levels of lymphocytes and plasma cells were absent.

1985 ◽  
Vol 34 (4) ◽  
pp. 407-416 ◽  
Author(s):  
Yukio OGAWA ◽  
Kiyoshi MATSUMOTO ◽  
Eiichi KAMATA ◽  
Yasukazu IKEDA ◽  
Toyozo KANEKO

2021 ◽  
Author(s):  
Cong Wang ◽  
Xiaohang Qin ◽  
Guanzhong Gong ◽  
Lizhen Wang ◽  
Ya Su ◽  
...  

Abstract Objectives: To quantify the pelvic bone marrow (PBM) fat content changes receiving different radiation doses of concurrent chemoradiotherapy for cervical cancer and to determine association with peripheral blood cell counts. Methods: Fifty-four patients were prospectively collected. Patients underwent MRI iterative decomposition of water and fat with echo asymmetrical and least squares estimation (IDEAL IQ) scanning at RT-Pre, RT mid-point, RT end, and six months. The changes in proton density fat fraction (PDFF%) at 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, and >50 Gy doses were analyzed. Spearman’s rank correlations were performed between peripheral blood cell counts versus the differences in PDFF% at different dose gradients before and after treatment. Results: The lymphocytes (ALC) nadirs appeared at the midpoint of radiotherapy, which was only 27.6% of RT-Pre; the white blood cells (WBC), neutrophils (ANC), and platelets (PLT) nadirs appeared at the end of radiotherapy which was 52.4%, 65.1%, and 69.3% of RT-Pre, respectively. At RT mid-point and RT-end, PDFF% increased by 46.8% and 58.5%, respectively. Six months after radiotherapy, PDFF% decreased by 4.71% under 5–30 Gy compared to RT-end; while it still increased by 55.95% compared to RT-Pre. There was a significant positive correlation between PDFF% and ANC nadirs at 5–10 Gy (r = 0.62, P = 0.006), and correlation was observed between PDFF% and ALC nadirs at 5–10 Gy (r = 0.554, P = 0.017). Conclusion: MRI IDEAL IQ imaging was a non-invasive approach to evaluate and track the changes of PBM fat content with concurrent chemoradiotherapy for cervical cancer. The limitation of low-dose bone marrow irradiation volume in cervical cancer concurrent chemoradiotherapy should be paid more attention.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 216-225 ◽  
Author(s):  
W Hiddemann ◽  
BD Clarkson ◽  
T Buchner ◽  
MR Melamed ◽  
M Andreeff

Abstract A new technique is introduced for determining the number of bone marrow cells per cubic millimeter marrow, providing an accurate and objective means for quantitating therapy-induced cytoreduction. The method requires a correction for admixed peripheral blood in bone marrow aspirates to measure the fraction of remaining pure marrow. While cell kinetic differences between blood, aspirates, and biopsies identify the proportion of contaminating blood cells, the ratio of red cell hematocrits in blood and aspirate gives the volume of trapped blood. By combining both procedures, bone marrow cell counts per unit volume pure marrow result (BMC/cu mm BM), which were found highly reproducible. Blast cell counts (BMBC/cu mm BM) were obtained by additional morphological differentiation. BMC and BMBC/cu mm BM were monitored in 16 patients with acute nonlymphoblastic leukemia treated with daunorubicin, cytosine arabinoside, and 6-thioguanine in combination and in 4 patients with end-stage acute leukemias and non-Hodgkin's lymphomas during high-dose thymidine therapy. Total and daily therapy- induced cytoreduction rates were significantly greater (P less than 0.01) in responders than nonresponders to either regimen. Changes in BMC/cu mm BM were also found representative for changes in BMBC/cu mm BM, since the majority of bone marrow cells were blasts. In acute leukemia. BMC/cu mm BM thus provides accurate and objective measurements of treatment efficacy in vivo and after short periods of drug exposure. Differences in cytoreduction rates within the group of responders also suggest possible prognostic implications.


1999 ◽  
Vol 30 (1) ◽  
pp. 29-53 ◽  
Author(s):  
Jenny Foss Abrahamsen ◽  
Robert B. Sothern ◽  
Sverre Sandberg ◽  
Asbj⊘rn Aakvaag ◽  
Ole Didrik Laerum ◽  
...  

Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 216-225 ◽  
Author(s):  
W Hiddemann ◽  
BD Clarkson ◽  
T Buchner ◽  
MR Melamed ◽  
M Andreeff

A new technique is introduced for determining the number of bone marrow cells per cubic millimeter marrow, providing an accurate and objective means for quantitating therapy-induced cytoreduction. The method requires a correction for admixed peripheral blood in bone marrow aspirates to measure the fraction of remaining pure marrow. While cell kinetic differences between blood, aspirates, and biopsies identify the proportion of contaminating blood cells, the ratio of red cell hematocrits in blood and aspirate gives the volume of trapped blood. By combining both procedures, bone marrow cell counts per unit volume pure marrow result (BMC/cu mm BM), which were found highly reproducible. Blast cell counts (BMBC/cu mm BM) were obtained by additional morphological differentiation. BMC and BMBC/cu mm BM were monitored in 16 patients with acute nonlymphoblastic leukemia treated with daunorubicin, cytosine arabinoside, and 6-thioguanine in combination and in 4 patients with end-stage acute leukemias and non-Hodgkin's lymphomas during high-dose thymidine therapy. Total and daily therapy- induced cytoreduction rates were significantly greater (P less than 0.01) in responders than nonresponders to either regimen. Changes in BMC/cu mm BM were also found representative for changes in BMBC/cu mm BM, since the majority of bone marrow cells were blasts. In acute leukemia. BMC/cu mm BM thus provides accurate and objective measurements of treatment efficacy in vivo and after short periods of drug exposure. Differences in cytoreduction rates within the group of responders also suggest possible prognostic implications.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 229-229 ◽  
Author(s):  
Alana Vicente ◽  
Fernanda Gutierrez-Rodrigues ◽  
Valentina Giudice ◽  
Zhijie Wu ◽  
Sachiko Kajigaya ◽  
...  

Abstract Eltrombopag (EPAG), a thrombopoietin receptor agonist, has been shown to improve hematopoiesis in patients with aplastic anemia (AA), but in MDS patients the effect of thrombopoietin mimetics in bone marrow function is still unclear. In this phase-2 dose escalation study, we investigated the safety and effectiveness of EPAG treatment in low to intermediate-2 risk MDS patients (NCT 00961064). Thirty patients were enrolled from March 2011 to July 2017. Preceding enrollment the majority of patients were either diagnosed with AA (n=13) or hypoplastic MDS (n=5). EPAG was started at 50 mg/day, up to a maximal dose of 150 mg/day, increasing the dose by 25mg every 2 weeks. The primary endpoint was hematologic response at 16 or 20 weeks, defined as either: (1) an increase in platelet counts ≥20.000/uL or transfusion independence for a minimum of 8 weeks; (2) hemoglobin (Hb) increase of ≥1.5g/dL from baseline, or a reduction in red blood cells (RBC) transfusion of at least 50%; or (3) an increase in absolute neutrophil counts (ANC) of ≥0.5x109/L or by at least 100% in patients with a baseline ANC <0.5x109/L. Responding patients could continue EPAG treatment on an extension arm. The primary endpoint of hematological response was met in 14/30 patients (47%). All responders continued EPAG on the extension arm. In 3 patients, peripheral blood cell counts declined on EPAG after the initial response. One patient withdrew from the study. Ten of the 14 responding patients achieved a robust response (RR) after a median treatment duration of 15 months (range 7-27 months). Robust response was defined as stable hematopoiesis with at least a hemoglobin >10g/dl, and thrombocytes >50.000/L, and ANC>1000/L. However, peripheral blood cell counts significantly declined in 5/10 RR and EPAG was restarted per protocol. In 4 of these patients peripheral blood cell counts recovered. One patient did not achieve a second response. Based on International Prognostic Score System (IPSS), 4/30 (13%) patients progressed on study, including 3 non-responders and 1 responder, at a median follow-up of 4 months (3-35 months). The responding patient was diagnosed with increased bone marrow myeloblast 7 months after discontinuation of EPAG for robust response and 35 months after enrolling in the study. New cytogenetic abnormalities determined progression in non-responding patients (Figure). Novel dose limiting toxicities were not observed. Three patients developed CTCAE grade III hepatic toxicities. One of them discontinued EPAG at 3 months. Elevated transaminases returned to baseline after EPAG discontinuation in 2 patients. In both cases EPAG was resumed either at the same (150mg/day) or reduced dose (50mg/day) level. There were no treatment-related death cases. One patient died on study before the primary endpoint from acute respiratory distress syndrome. Sequential acquisition of genomic aberrations has been associated with malignant transformation. Targeting next-generation sequencing for somatic variants in genes previously associated with myeloid malignancies (Myeloid cancer genes, MCG) was performed in 29/30 patients with sufficient material (bone marrow mononuclear cells) available from baseline, primary endpoint, and at time of progression. At baseline, 22/29 (76%) patients were found with at least one mutation:TET2 (14.5%), ASXL1 (12.5%), SF3B1 (8.3%), SETBP1 (8.3%), ATM (8.3%), and ZRSR2 (8.3%). After EPAG, additional somatic variants in different genes were detected in 4/14 responders and 7/16 non-responders. Variants present at baseline were no longer detected in post EPAG samples from 4 responding and 6 non-responding patients. The VAF of variants detected at both time points were similar, indicating no selective expansion of clones with EPAG in neither responder, non-responder nor patients with progression based on IPSS. In conclusion, our results suggest that EPAG is well-tolerated and effective in restoring hematopoiesis in patients with low to intermediate-2 risk MDS, particular with a prior history of hypoplastic bone marrow failure syndromes. EPAG was discontinued for robust response in the majority of responders but declining blood cell counts were observed in about 50% of them. Variants in MCG were more common at study entry compared to patients with aplastic anemia (Yoshizato, NEJM, 2015). However, EPAG appears not to selectively promote expansion of clones harboring MCGs in this patient population. Disclosures Townsley: National Institute of Health: Research Funding. Scheinberg:Pfizer: Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Janssen: Honoraria, Research Funding. Dunbar:National Institute of Health: Research Funding. Young:GlaxoSmithKline: Research Funding; CRADA with Novartis: Research Funding; National Institute of Health: Research Funding. Winkler:National Institute of Health: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document