scholarly journals A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions

2020 ◽  
pp. 20201086
Author(s):  
Le Cao ◽  
Xiang Liu ◽  
Jianying Li ◽  
Tingting Qu ◽  
Lihong Chen ◽  
...  

Objective: To investigate the feasibility of using deep learning image reconstruction (DLIR) to significantly reduce radiation dose and improve image quality in contrast-enhanced abdominal CT. Methods: This was a prospective study. 40 patients with hepatic lesions underwent abdominal CT using routine dose (120kV, noise index (NI) setting of 11 with automatic tube current modulation) in the arterial-phase (AP) and portal-phase (PP), and low dose (NI = 24) in the delayed-phase (DP). All images were reconstructed at 1.25 mm thickness using ASIR-V at 50% strength. In addition, images in DP were reconstructed using DLIR in high setting (DLIR-H). The CT value and standard deviation (SD) of hepatic parenchyma, spleen, paraspinal muscle and lesion were measured. The overall image quality includes subjective noise, sharpness, artifacts and diagnostic confidence were assessed by two radiologists blindly using a 5-point scale (1, unacceptable and 5, excellent). Dose between AP and DP was compared, and image quality among different reconstructions were compared using SPSS20.0. Results: Compared to AP, DP significantly reduced radiation dose by 76% (0.76 ± 0.09 mSv vs 3.18 ± 0.48 mSv), DLIR-H DP images had lower image noise (14.08 ± 2.89 HU vs 16.67 ± 3.74 HU, p < 0.001) but similar overall image quality score as the ASIR-V50% AP images (3.88 ± 0.34 vs 4.05 ± 0.44, p > 0.05). For the DP images, DLIR-H significantly reduced image noise in hepatic parenchyma, spleen, muscle and lesion to (14.77 ± 2.61 HU, 14.26 ± 2.67 HU, 14.08 ± 2.89 HU and 16.25 ± 4.42 HU) from (24.95 ± 4.32 HU, 25.42 ± 4.99 HU, 23.99 ± 5.26 HU and 27.01 ± 7.11) with ASIR-V50%, respectively (all p < 0.001) and improved image quality score (3.88 ± 0.34 vs 2.87 ± 0.53; p < 0.05). Conclusion: DLIR-H significantly reduces image noise and generates images with clinically acceptable quality and diagnostic confidence with 76% dose reduction. Advances in knowledge: (1) DLIR-H yielded a significantly lower image noise, higher CNR and higher overall image quality score and diagnostic confidence than the ASIR-V50% under low signal conditions. (2) Our study demonstrated that at 76% lower radiation dose, the DLIR-H DP images had similar overall image quality to the routine-dose ASIR-V50% AP images.

2017 ◽  
Vol 59 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Ahmed E Othman ◽  
Malte Niklas Bongers ◽  
Dominik Zinsser ◽  
Christoph Schabel ◽  
Julian L Wichmann ◽  
...  

Background Patients with acute non-traumatic abdominal pain often undergo abdominal computed tomography (CT). However, abdominal CT is associated with high radiation exposure. Purpose To evaluate diagnostic performance of a reduced-dose 100 kVp CT protocol with advanced modeled iterative reconstruction as compared to a linearly blended 120 kVp protocol for assessment of acute, non-traumatic abdominal pain. Material and Methods Two radiologists assessed 100 kVp and linearly blended 120 kVp series of 112 consecutive patients with acute non-traumatic pain (onset < 48 h) regarding image quality, noise, and artifacts on a five-point Likert scale. Both radiologists assessed both series for abdominal pathologies and for diagnostic confidence. Both 100 kVp and linearly blended 120 kVp series were quantitatively evaluated regarding radiation dose and image noise. Comparative statistics and diagnostic accuracy was calculated using receiver operating curve (ROC) statistics, with final clinical diagnosis/clinical follow-up as reference standard. Results Image quality was high for both series without detectable significant differences ( P = 0.157). Image noise and artifacts were rated low for both series but significantly higher for 100 kVp ( P ≤ 0.021). Diagnostic accuracy was high for both series (120 kVp: area under the curve [AUC] = 0.950, sensitivity = 0.958, specificity = 0.941; 100 kVp: AUC ≥ 0.910, sensitivity ≥ 0.937, specificity = 0.882; P ≥ 0.516) with almost perfect inter-rater agreement (Kappa = 0.939). Diagnostic confidence was high for both dose levels without significant differences (100 kVp 5, range 4–5; 120 kVp 5, range 3–5; P = 0.134). The 100 kVp series yielded 26.1% lower radiation dose compared with the 120 kVp series (5.72 ± 2.23 mSv versus 7.75 ± 3.02 mSv, P < 0.001). Image noise was significantly higher in reduced-dose CT (13.3 ± 2.4 HU versus 10.6 ± 2.1 HU; P < 0.001). Conclusion Reduced-dose abdominal CT using 100 kVp yields excellent image quality and high diagnostic accuracy for the assessment of acute non-traumatic abdominal pain.


2020 ◽  
Vol 21 (2) ◽  
pp. 28-43
Author(s):  
Piyaporn Apisarnthanarak ◽  
Chosita Buranont ◽  
Chulaluck Boonma ◽  
Sureerat Janpanich ◽  
Tarntip Suwatananonthakij ◽  
...  

OBJECTIVE: To compare radiation dose and image quality between standard dose abdominal CT currently performed at our hospital and new low dose abdominal CT using various percentages (0%, 10%, 20%, and 30%) of Adaptive Statistical Iterative Reconstruction (ASiR). MATERIALS AND METHODS: We prospectively performed low dose abdominal CT (30% reduction of standard tube current) in 119 participants. The low dose CT images were post processed with four parameters (0%, 10%, 20% and 30%) of ASiR. The volume CT dose index (CTDIvol) of standard and low dose CT were compared. Four experienced abdominal radiologists independently assessed the quality of low dose CT with aforementioned ASiR parameters using a 5-point-scale satisfaction score (1 = unacceptable, 2 = poor, 3 = average, 4 = good, and 5 = excellent image quality) by using prior standard dose CT as a reference of excellent image quality (5). Each reader selected the preference ASiR parameter for each participant. The image noise of the liver and the aorta in all 5 (1 prior standard dose and 4 current low dose) image sets was measured.     RESULTS: The mean CTDIvol of low dose CT was significantly lower than of standard dose CT (7.17 ± 0.08 vs 12.02 ±1.61 mGy, p<0.001). The mean satisfaction scores for low dose CT with 0%, 10%, 20% and 30% ASiR were 3.95, 3.99, 3.91 and 3.87, respectively with the ranges of 3 to 5 in all techniques. The preferred ASiR parameters of each participant randomly selected by each reader were varied, depending on the readers’ opinions. The mean image noise of the aorta on standard dose CT and low dose CT with 0%, 10%, 20%, and 30% ASiR was 29.07, 36.97, 33.92, 31.49, and 29.11, respectively, while the mean image noise of the liver was 24.60, 30.21, 28.33, 26.25, and 24.32, respectively. CONCLUSION: Low dose CT with 30% reduction of standard mA had acceptable image quality with significantly reduced radiation dose. The increment of ASiR was helpful in reducing image noise.  


2021 ◽  
pp. 1-12
Author(s):  
Lu-Lu Li ◽  
Huang Wang ◽  
Jian Song ◽  
Jin Shang ◽  
Xiao-Ying Zhao ◽  
...  

OBJECTIVES: To explore the feasibility of achieving diagnostic images in low-dose abdominal CT using a Deep Learning Image Reconstruction (DLIR) algorithm. METHODS: Prospectively enrolled 47 patients requiring contrast-enhanced abdominal CT scans. The late-arterial phase scan was added and acquired using lower-dose mode (tube current range, 175–545 mA; 80 kVp for patients with BMI ≤24 kg/m2 and 100 kVp for patients with BMI >  24 kg/m2) and reconstructed with DLIR at medium setting (DLIR-M) and high setting (DLIR-H), ASIR-V at 0% (FBP), 40% and 80% strength. Both the quantitative measurement and qualitative analysis of the five types of reconstruction methods were compared. In addition, radiation dose and image quality between the early-arterial phase ASIR-V images using standard-dose and the late-arterial phase DLIR images using low-dose were compared. RESULTS: For the late-arterial phase, all five reconstructions had similar CT value (P >  0.05). DLIR-H, DLIR-M and ASIR-V80% images significantly reduced the image noise and improved the image contrast noise ratio, compared with the standard ASIR-V40% images (P <  0.05). ASIR-V80% images had undesirable image characteristics with obvious “waxy” artifacts, while DLIR-H images maintained high spatial resolution and had the highest subjective image quality. Compared with the early-arterial scans, the late-arterial phase scans significantly reduced the radiation dose (P <  0.05), while the DLIR-H images exhibited lower image noise and good display of the specific image details of lesions. CONCLUSIONS: DLIR algorithm improves image quality under low-dose scan condition and may be used to reduce the radiation dose without adversely affecting the image quality.


2021 ◽  
Vol 22 (1) ◽  
pp. 5-19
Author(s):  
Piyaporn Apisarnthanarak ◽  
Anawat Sriwaleephun ◽  
Sastrawut Thammakittiphan ◽  
Wimonrat Lornimitdee ◽  
Atchariya Klinhom ◽  
...  

OBJECTIVE: To compare the image quality and the radiation dose between fixed tube current (FTC) low dose abdominal CT currently performed at our hospital and new automatic tube current modulation (ATCM) low dose abdominal CT. MATERIALS AND METHODS: We prospectively performed ATCM low dose abdominal CT in 88 participants who had prior FTC low dose CT for comparison. Four experienced abdominal radiologists independently and blindly assessed the quality of FTC and ATCM low dose CT images by using a 5-point-scale satisfaction score (1 = unacceptable, 2 = poor, 3 = average, 4 = good, and 5 = excellent image quality). Each reader selected the preferred image set between FTC and ATCM low dose techniques for each participant. The image noise of the liver and the aorta in both techniques was measured. The volume CT dose index (CTDIvol) of both techniques was compared. RESULTS: The mean satisfaction scores (SD) for FTC and ATCM low dose CT were 4.38 (0.66) and 4.38 (0.64), respectively with the ranges of 3 to 5 in both techniques, which were all acceptable for CT interpretation. The preferred image set between FTC and ATCM low dose techniques of each participant randomly selected by each reader were varied, depending on the readers’ opinions. The mean image noise of the aorta on FTC and ATCM low dose CT accounted for 34.75 and 36.46, respectively, while the mean image noise of the liver was 28.86 and 29.81, respectively. The mean CTDIvol (SD) of FTC and ATCM low dose CT were 8.42 (0.32) and 8.12 (0.43) mGy, respectively.   CONCLUSION: FTC and ATCM low dose abdominal CT provided comparable acceptable image quality and showed no clinical significance in radiation dose optimization.


2020 ◽  
pp. 28-43
Author(s):  
Piyaporn Apisarnthanarak ◽  
Chosita Buranont ◽  
Chulaluck Boonma ◽  
Sureerat Janpanich ◽  
Tarntip Suwatananonthakij ◽  
...  

OBJECTIVE: To compare radiation dose and image quality between standard dose abdominal CT currently performed at our hospital and new low dose abdominal CT using various percentages (0%, 10%, 20%, and 30%) of Adaptive Statistical Iterative Reconstruction (ASiR). MATERIALS AND METHODS: We prospectively performed low dose abdominal CT (30% reduction of standard tube current) in 119 participants. The low dose CT images were post processed with four parameters (0%, 10%, 20% and 30%) of ASiR. The volume CT dose index (CTDIvol) of standard and low dose CT were compared. Four experienced abdominal radiologists independently assessed the quality of low dose CT with aforementioned ASiR parameters using a 5-point-scale satisfaction score (1 = unacceptable, 2 = poor, 3 = average, 4 = good, and 5 = excellent image quality) by using prior standard dose CT as a reference of excellent image quality (5). Each reader selected the preference ASiR parameter for each participant. The image noise of the liver and the aorta in all 5 (1 prior standard dose and 4 current low dose) image sets was measured.     RESULTS: The mean CTDIvol of low dose CT was significantly lower than of standard dose CT (7.17 ± 0.08 vs 12.02 ±1.61 mGy, p<0.001). The mean satisfaction scores for low dose CT with 0%, 10%, 20% and 30% ASiR were 3.95, 3.99, 3.91 and 3.87, respectively with the ranges of 3 to 5 in all techniques. The preferred ASiR parameters of each participant randomly selected by each reader were varied, depending on the readers’ opinions. The mean image noise of the aorta on standard dose CT and low dose CT with 0%, 10%, 20%, and 30% ASiR was 29.07, 36.97, 33.92, 31.49, and 29.11, respectively, while the mean image noise of the liver was 24.60, 30.21, 28.33, 26.25, and 24.32, respectively. CONCLUSION: Low dose CT with 30% reduction of standard mA had acceptable image quality with significantly reduced radiation dose. The increment of ASiR was helpful in reducing image noise.


2020 ◽  
Vol 21 (3) ◽  
pp. 5-24
Author(s):  
Piyaporn Apisarnthanarak ◽  
Suchanya Hongpinyo ◽  
Krittya Saysivanon ◽  
Chulaluck Boonma ◽  
Sureerat Janpanich ◽  
...  

Objective: To compare radiation dose, radiologists’ satisfaction, and image noise between the standard dose abdominal CT currently performed at our hospital and the new automatic tube current modulation (ATCM) low dose abdominal CT, using various parameters (0%, 10%, 20%, and 30%) of the Adaptive Statistical Iterative Reconstruction (ASiR). Materials and Methods: We prospectively performed the ATCM low dose abdominal CT in 111 participants who had prior standard dose CT for comparison. The ATCM low dose CT images were post processed with 4 parameters (0%, 10%, 20% and 30%) of ASiR on a CT workstation. The volume CT dose index (CTDIvol) of the ATCM low dose and the standard dose CT were compared. Four experienced abdominal radiologists independently assessed the quality of the ATCM low dose CT with the aforementioned ASiR parameters using a 5-point-scale satisfaction score (1 = unacceptable, 2 = poor, 3 = average, 4 = good, and 5 = excellent image quality) by using the prior standard dose CT as a reference of an excellent image quality (5). Each reader selected the preferred ASiR parameter for each participant. The image noise of the liver and the aorta in all 5 techniques (1 prior standard dose and 4 current ATCM low dose techniques) was measured. The correlation between the image quality vs the participants’ body mass index (BMI) and waist circumferences were analyzed. Results: The mean CTDIvol of the ATCM low dose CT was significantly lower than of the standard dose CT (7.29 ± 0.20 vs 11.28 ± 0.23 mGy, p<0.001). The mean satisfaction score for the ATCM low dose CT with 0%, 10%, 20% and 30% ASiR were 4.14, 4.16, 4.17, and 4.26, respectively with the ranges of 3 to 5 in all techniques. The preferred ASiR parameters of each participant randomly selected by each reader were varied, depending on the readers’ opinions. The mean image noise of the aorta on the standard dose CT and the ATCM low dose CT with 0%, 10%, 20%, and 30% ASiR was 30.69, 36.60, 34.05, 31.43, and 29.09, respectively, while the mean image noise of the liver was 24.96, 29.90, 27.86, 25.66, and 23.68, respectively. There was a correlation between the image quality (satisfaction score and image noise) vs the participants’ BMI and waist circumferences. Conclusion: The ATCM low dose CT received acceptable radiologists’ satisfaction with significant radiation dose reduction. The increment of ASiR was helpful in reducing the image noise and had a tendency to increase the radiologists’ satisfaction score.


2017 ◽  
Vol 59 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Yun Hye Ju ◽  
Geewon Lee ◽  
Ji Won Lee ◽  
Seung Baek Hong ◽  
Young Ju Suh ◽  
...  

Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal–Wallis test and the Chi-square test. Results Effective doses were 61–87% lower in groups 2–5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P < 0.001). Overall image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1–3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1–4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.


2020 ◽  
Vol 61 (9) ◽  
pp. 1186-1195
Author(s):  
Veena R Iyer ◽  
Eric C Ehman ◽  
Ashish Khandelwal ◽  
Michael L Wells ◽  
Yong S Lee ◽  
...  

Background Low tube potential-high tube current computed tomography (CT) imaging allows reduction in iodine-based contrast dose and may extend the benefit of routine contrast-enhanced CT exams to patients at risk of nephrotoxicity. Purpose To determine the ability of an iodine contrast reduction algorithm to maintain diagnostic image quality for contrast-enhanced abdominal CT. Material and Methods CT exams with iodine contrast reduction were prescribed for patients at risk for renal dysfunction. The iodine contrast reduction algorithm combines weight-based contrast volume reduction with patient width-based low tube potential selection and bolus-tracking. Control exams with routine iodine dose were selected based on weight, width, and scan protocol. Three radiologists evaluated image quality and diagnostic confidence using a 4-point scale (<2 acceptable). Another radiologist assessed contrast reduction indications and measured portal vein and liver contrast-to-noise ratios. Results Forty-six contrast reduction algorithm and control exams were compared (mean creatinine 1.6 vs. 1.2 mg/dL, P ≤  0.0001). Thirty-nine contrast reduction patients had an eGFR <60 mL/min/1.73m2 and 15 had single or transplanted kidney. Mean iodine contrast dose was lower in the contrast reduction group (20.9 vs. 39.4 g/mL, P <  0.0001). Diagnostic confidence was rated as acceptable in 95% (131/138) of contrast reduction and 100% of control exams (1.18–1.28 vs. 1.02–1.13, respectively; P >  0.06). Liver attenuation and contrast-to-noise ratio (CNR) were similar ( P =  0.08), but portal vein attenuation and CNR were lower with contrast-reduction (mean 176 vs. 198 HU, P =  0.02; 13 vs. 16, P =  0.0002). Conclusion This size-based contrast reduction algorithm using low kV and bolus tracking reduced iodine contrast dose by 50%, while achieving acceptable image quality in 95% of exams.


2017 ◽  
Vol 59 (6) ◽  
pp. 740-747
Author(s):  
Marie-Louise Aurumskjöld ◽  
Marcus Söderberg ◽  
Fredrik Stålhammar ◽  
Kristina Vult von Steyern ◽  
Anders Tingberg ◽  
...  

Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose4), and images from the low-dose examinations were reconstructed with both iDose4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60–0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.


2019 ◽  
Author(s):  
Jihang Sun ◽  
Lixin Yang ◽  
Zuofu Zhou ◽  
Dan Zhang ◽  
Wei Han ◽  
...  

Abstract Background The adverse effect of low-dose CT on image quality may be mitigated using iterative reconstructions. The purpose of this study was to evaluate the performance of the full model-based iterative reconstruction (MBIR) and adaptive statistical reconstruction (ASIR) algorithms in low radiation dose and low contrast dose abdominal contrast-enhanced CT (CECT) in children. Methods A total of 59 children (32 males and 27 females) undergoing low radiation dose (100kVp) and low contrast dose (270 mgI/ml) abdominal CECT were enrolled. The median age was 4.0 years (ranging from 0.3 to 13 years). The raw data were reconstructed with MBIR, ASIR and filtered back projection (FBP) algorithms into 6 groups (MBIR, 100%ASIR, 80%ASIR, 60%ASIR, 40%ASIR and FBP). The CT numbers, standard deviations, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of liver, pancreas, kidney and abdominal aorta were measured. Two radiologists independently evaluated the subjective image quality including the overall image noise and structure display ability on a 4-point scale with 3 being clinically acceptable. The measurements among the reconstruction groups were compared using one-way ANOVA. Results The overall image noise score and display ability were 4.00±0.00 and 4.00±0.00 with MBIR, and 3.27±0.33 and 3.25±0.43 with ASIR100%, respectively, which met the diagnostic requirement; other reconstructions couldn’t meet the diagnostic requirements. Compared with FBP images, the noise of MBIR images was reduced by 62.86%-65.73% for the respective organs (F=48.15-80.47, P<0.05), and CNR increased by 151.38%-170.69% (F=22.94-38.02, P<0.05). Conclusions MBIR or ASIR100% improves the image quality of low radiation dose and contrast dose abdominal CT in children to meet the diagnostic requirements, and MBIR has the best performance.


Sign in / Sign up

Export Citation Format

Share Document