Vibration Analysis of a Rectangular Thin Plate with Two Parallel Cracks

2010 ◽  
Vol 13 (4) ◽  
pp. 741-753 ◽  
Author(s):  
T. Yin ◽  
H. F. Lam
2019 ◽  
Vol 26 (4) ◽  
pp. 39-46
Author(s):  
Do Van Doan ◽  
Adam Szeleziński ◽  
Lech Murawski ◽  
Adam Muc

AbstractThin-walled structures are very popular in industries, especially in the field of shipbuilding. There are many types of equipment and structures of ships, which are made up of thin-walled structures such as hull, deck and superstructure. Therefore, the analysis and understanding of the static and dynamic characteristics of a thin-walled structure are very important. In this article, we focus on vibration analysis of a typical thin-walled structure-rectangular plate, a basic structure of the hull. Vibration analysis of a rectangular thin plate is conducted by two methods: numerical modelling method of the finite element on Patran-Nastran software platform and experimental method implemented in the laboratory of Gdynia Maritime University. Thin rectangular plate is fixed one end by four clamping plates and is modelled with finite elements and different meshing densities. The numerical model of thin rectangular plate is divided into four cases. Case 1, thin rectangular plate, and clamping plates are modelled with two-dimensional elements. Case 2, the rectangular thin plate is modelled with two-dimensional elements; the clamping plates are modelled with three-dimensional elements. Case 3, both the rectangular thin plate and clamping plates are modelled with three-dimensional elements. Case 4, the rectangular thin plate, and clamping plates are modelled with three-dimensional elements with larger mesh density to increase the accuracy of the calculation results. After that, the results of vibration analysis according to the numerical modelling method on Patran-Nastran software platform for these cases were compared with the measurement results. From there, assess the accuracy of analysis results of selected numerical model methods and the ability to widely apply this numerical model method to other marine structures.


2013 ◽  
Vol 699 ◽  
pp. 641-644
Author(s):  
Xiao Li Bian ◽  
Shuang Bao Li

Nonlinear oscillations of a simply-supported symmetric cross-ply composite laminated rectangular thin plate are investigated in this paper. The rectangular thin plate is subjected to the transversal and in-plane excitations. Based on the Reddy’s third-order shear deformation plate theory and the stress-strain relationship of the composite laminated plate, a two-degree-of-freedom non-autonomous nonlinear system governing equations of motions for the composite laminated rectangular thin plate is derived by using the Galerkin’s method. Numerical simulations illustrate that there exist complex nonlinear oscillations for composite laminated rectangular thin plate.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Sign in / Sign up

Export Citation Format

Share Document