scholarly journals Whole Exome Sequencing of Multiple Atypical Meningiomas in a Patient without History of Neurofibromatosis Type II: A Case Report

2020 ◽  
Vol 21 ◽  
Author(s):  
Jian Lyu ◽  
Yu Quan ◽  
Ju-bo Wang ◽  
Shou-ping Gong
2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Ashley Cannon ◽  
Svetlana Kurklinsky ◽  
Kimberly J. Guthrie ◽  
Douglas L. Riegert-Johnson

Objective. To describe the use of an advanced genetic testing technique, whole exome sequencing, to diagnose a patient and their family with aSCN9Achannelopathy.Setting. Academic tertiary care center.Design. Case report.Case Report. A 61-year-old female with a history of acute facial pain, chronic pain, fibromyalgia, and constipation was found to have a gain of functionSCN9Amutation by whole exome sequencing. This mutation resulted in anSCN9Achannelopathy that is most consistent with a diagnosis of paroxysmal extreme pain disorder. In addition to the patient being diagnosed, four siblings have a clinical diagnosis ofSCN9Achannelopathy as they have consistent symptoms and a sister with a known mutation. For treatment, gabapentin was ineffective and carbamazepine was not tolerated. Nontraditional therapies improved symptoms and constipation resolved with pelvic floor retraining with biofeedback.Conclusion. Patients with a personal and family history of chronic pain may benefit from a referral to Medical Genetics. Pelvic floor retraining with biofeedback should be considered for patients with aSCN9Achannelopathy and constipation.


Author(s):  
J Fonseca ◽  
C Melo ◽  
C Ferreira ◽  
M Sampaio ◽  
R Sousa ◽  
...  

AbstractEarly infantile epileptic encephalopathy-64 (EIEE 64), also called RHOBTB2-related developmental and epileptic encephalopathy (DEE), is caused by heterozygous pathogenic variants (EIEE 64; MIM#618004) in the Rho-related BTB domain-containing protein 2 (RHOBTB2) gene. To date, only 13 cases with RHOBTB2-related DEE have been reported. We add to the literature the 14th case of EIEE 64, identified by whole exome sequencing, caused by a heterozygous pathogenic variant in RHOBTB2 (c.1531C > T), p.Arg511Trp. This additional case supports the main features of RHOBTB2-related DEE: infantile-onset seizures, severe intellectual disability, impaired motor functions, postnatal microcephaly, recurrent status epilepticus, and hemiparesis after seizures.


2020 ◽  
Vol 14 (2) ◽  
pp. 83-88
Author(s):  
Phawin Kor-anantakul ◽  
Kanya Suphapeetiporn ◽  
Somchit Jaruratanasirikul

AbstractAblepharon macrostomia syndrome (AMS) is a rare congenital disorder. To our knowledge, only 20 cases have been reported to date, and all in patients from Western countries. We report a case of AMS in a Thai patient, who presented at age 3 months with severe ectropion of both upper and lower eyelids, alopecia totalis, no palpable clitoris, and hypoplasia of both labia minora and labia majora. Trio whole exome sequencing analysis was performed, which revealed a heterozygous missense c.223G>A (p.Glu75Lys) variation in TWIST2. To our knowledge, this is the first reported case of AMS in a patient from Thailand and the first reported case of AMS in Asia.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Stephanie M Ware ◽  
Steven E Lipshultz ◽  
Steven D Colan ◽  
Ling Shi ◽  
Charles E Canter ◽  
...  

Introduction: Pediatric cardiomyopathies are genetically heterogeneous diseases with high risk of death or cardiac transplant. Despite progress in identifying causes, the majority of cases remain idiopathic. Currrently, genetic testing is not performed in all children with cardiomyopathy. Gene identification leads to better individual risk stratification and has the potential to stimulate the development of therapies based on the underlying mutation. The aim of this study is to identify genetic mutations in pediatric cardiomyopathy patients using whole exome sequencing. Hypothesis: Sarcomeric mutations are under-diagnosed causes of all forms of cardiomyopathy in children. Methods: Probands with cardiomyopathy were recruited from 11 institutions. Results of clinical genetic testing prior to enrollment were collected. Whole exome sequencing was performed and mutations were identified in 35 genes currently available on clinical genetic testing panels. Results: The initial 154 probands subjected to exome included 78 patients with DCM, 43 with HCM, 14 with RCM, and 19 with LVNC, mixed, or unknown types. Familial disease was present in 38% and the remainder were idiopathic. Twenty-seven percent had positive clinical genetic testing prior to enrollment. Exome testing identified mutations in 38 subjects who had not had clinical testing, increasing the cohort positive testing rate to 55% (DCM, 34.6%; HCM, 74.4%; RCM, 71.4%). Forty-five percent of subjects with no family history of disease had an identifiable mutation. Conclusions: Pediatric cardiomyopathy patients have a high incidence of mutations that can be identified by clinically available genetic testing. Lack of a family history of cardiomyopathy was not predictive of normal genetic testing. These results support the broader use of genetic testing in pediatric patients with all functional phenotypes of cardiomyopathy to identify disease causation allowing better family risk stratification.


2019 ◽  
Vol 50 (6) ◽  
pp. 2247-2251 ◽  
Author(s):  
José E. García-Ortiz ◽  
Ana I. Zarazúa-Niño ◽  
Angélica A. Hernández-Orozco ◽  
Edwin A. Reyes-Oliva ◽  
Carlos E. Pérez-Ávila ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Lara Pemberton ◽  
Robert Barker ◽  
Anna Cockell ◽  
Vijaya Ramachandran ◽  
Andrea Haworth ◽  
...  

Abstract Background Osteocraniostenosis (OCS) is a rare genetic disorder characterised by premature closure of cranial sutures, gracile bones and perinatal lethality. Previously, diagnosis has only been possible postnatally on clinical and radiological features. This study describes the first prenatal diagnosis of OCS. Case presentation In this case prenatal ultrasound images were suggestive of a serious but non-lethal skeletal dysplasia. Due to the uncertain prognosis the parents were offered Whole Exome Sequencing (WES), which identified a specific gene mutation in the FAMIIIa gene. This mutation had previously been detected in two cases and was lethal in both perinatally. This established the diagnosis, a clear prognosis and allowed informed parental choice regarding ongoing pregnancy management. Conclusions This case report supports the use of targeted WES prenatally to confirm the underlying cause and prognosis of sonographically suspected abnormalities.


Sign in / Sign up

Export Citation Format

Share Document