scholarly journals CiApex1 has AP endonuclease activity and abrogated AP site repair disrupts early embryonic development in Ciona intestinalis

2019 ◽  
Vol 94 (2) ◽  
pp. 81-93
Author(s):  
Kento Igarashi ◽  
Masafumi Funakoshi ◽  
Seiji Kato ◽  
Takahito Moriwaki ◽  
Yuichi Kato ◽  
...  
2006 ◽  
Vol 289 (1) ◽  
pp. 152-165 ◽  
Author(s):  
Benoît Maury ◽  
Camille Martinand-Mari ◽  
Jean-Philippe Chambon ◽  
Jonathan Soulé ◽  
Geneviève Degols ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 69 ◽  
Author(s):  
Wei-Wei Wang ◽  
Huan Zhou ◽  
Juan-Juan Xie ◽  
Gang-Shun Yi ◽  
Jian-Hua He ◽  
...  

Endonuclease IV (EndoIV) is a DNA damage-specific endonuclease that mainly hydrolyzes the phosphodiester bond located at 5′ of an apurinic/apyrimidinic (AP) site in DNA. EndoIV also possesses 3′-exonuclease activity for removing 3′-blocking groups and normal nucleotides. Here, we report that Thermococcus eurythermalis EndoIV (TeuendoIV) shows AP endonuclease and 3′-exonuclease activities. The effect of AP site structures, positions and clustered patterns on the activity was characterized. The AP endonuclease activity of TeuendoIV can incise DNA 5′ to various AP site analogues, including the alkane chain Spacer and polyethylene glycol Spacer. However, the short Spacer C2 strongly inhibits the AP endonuclease activity. The kinetic parameters also support its preference to various AP site analogues. In addition, the efficient cleavage at AP sites requires ≥2 normal nucleotides existing at the 5′-terminus. The 3′-exonuclease activity of TeuendoIV can remove one or more consecutive AP sites at the 3′-terminus. Mutations on the residues for substrate recognition show that binding AP site-containing or complementary strand plays a key role for the hydrolysis of phosphodiester bonds. Our results provide a comprehensive biochemical characterization of the cleavage/removal of AP site analogues and some insight for repairing AP sites in hyperthermophile cells.


2012 ◽  
Vol 36 (2) ◽  
pp. 272 ◽  
Author(s):  
Jie TAN ◽  
Hui-ling SUN ◽  
Fei GAO ◽  
Jing-ping YAN ◽  
Ying-hui DONG ◽  
...  

2010 ◽  
Vol 34 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Wei SONG ◽  
Jia-kun SONG ◽  
Chun-xin FAN ◽  
Tao ZHANG ◽  
Bin WANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aslı Okan ◽  
Necdet Demir ◽  
Berna Sozen

AbstractDiabetes mellitus (DM) has profound effects on the female mammalian reproductive system, and early embryonic development, reducing female reproductive outcomes and inducing developmental programming in utero. However, the underlying cellular and molecular mechanisms remain poorly defined. Accumulating evidence implicates endoplasmic reticulum (ER)-stress with maternal DM associated pathophysiology. Yet the direct pathologies and causal events leading to ovarian dysfunction and altered early embryonic development have not been determined. Here, using an in vivo mouse model of Type 1 DM and in vitro hyperglycaemia-exposure, we demonstrate the activation of ER-stress within adult ovarian tissue and pre-implantation embryos. In diabetic ovaries, we show that the unfolded protein response (UPR) triggers an apoptotic cascade by the co-activation of Caspase 12 and Cleaved Caspase 3 transducers. Whereas DM-exposed early embryos display differential ER-associated responses; by activating Chop in within embryonic precursors and Caspase 12 within placental precursors. Our results offer new insights for understanding the pathological effects of DM on mammalian ovarian function and early embryo development, providing new evidence of its mechanistic link with ER-stress in mice.


Sign in / Sign up

Export Citation Format

Share Document