maternal mrna
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 46)

H-INDEX

42
(FIVE YEARS 6)

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 101
Author(s):  
Ching-Ju Shen ◽  
Yi-Chen Fu ◽  
Yen-Pin Lin ◽  
Ching-Fen Shen ◽  
Der-Ji Sun ◽  
...  

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy could result in adverse perinatal outcome. Clinical data on the assessment of the immune response in vaccinated pregnant women and subsequent transplacental antibody transfer are quite limited. Objective: To assess maternal and neonatal neutralizing antibody levels against both wildtype and Delta (B.1.617.2) variants after maternal mRNA vaccination. Study Design: This cohort study was conducted 29 pregnant women who were vaccinated at least one dose of Moderna (mRNA-1273) vaccine. Both neutralizing antibody (wildtype and Delta variant) and S1 receptor binding domain IgG antibody levels were evaluated in maternal and cord blood on the day of delivery. Results: Superiority of antibody level was significant in fully vaccinated women compared with the one-dose group (maternal sera, median, 97.46%; cord sera, median, 97.37% versus maternal sera, median, 4.01%; cord sera, median, 1.44%). No difference in antibody level was noted in relation to interval of second immunization to delivery in the two-dose group (95.99% in 0–2 weeks, 97.45% in 2–4 weeks, 97.48% in 4–8 weeks, 97.72% in 8–10 weeks). The most pronounced reduction was observed for the Delta variant. The wildtype neutralizing antibody level of full-vaccinated women was not influenced by the pertussis vaccination. Conclusion: The data underscore the importance of full vaccination in pregnancy and support the recommendation of COVID-19 immunization for pregnant women. The lower level of vaccine-induced neutralizing antibodies for the Delta variant indicates insufficient protection for mother and newborn and highlights the need for development of effective vaccine strategies.


Author(s):  
Toshiyuki Goto ◽  
Shuhei Torii ◽  
Aoi Kondo ◽  
Junji Kawakami ◽  
Haruka Yagi ◽  
...  

AbstractAxis formation is one of the most important events occurring at the beginning of animal development. In the ascidian egg, the antero-posterior axis is established at this time owing to a dynamic cytoplasmic movement called cytoplasmic and cortical reorganisation. During this movement, mitochondria, endoplasmic reticulum (ER), and maternal mRNAs (postplasmic/PEM RNAs) are translocated to the future posterior side. Although accumulating evidence indicates the crucial roles played by the asymmetrical localisation of these organelles and the translational regulation of postplasmic/PEM RNAs, the organisation of ER has not been described in sufficient detail to date owing to technical difficulties. In this study, we developed three different multiple staining protocols for visualising the ER in combination with mitochondria, microtubules, or mRNAs in whole-mount specimens. We defined the internally expanded “dense ER” using these protocols and described cisterna-like structures of the dense ER using focused ion beam-scanning electron microscopy. Most importantly, we described the dynamic changes in the colocalisation of postplasmic/PEM mRNAs and dense ER; for example, macho-1 mRNA was detached and excluded from the dense ER during the second phase of ooplasmic movements. These detailed descriptions of the association between maternal mRNA and ER can provide clues for understanding the translational regulation mechanisms underlying axis determination during ascidian early embryogenesis.


2021 ◽  
Author(s):  
Blair Armistead ◽  
Yonghou Jiang ◽  
Marc Carlson ◽  
Emily S Ford ◽  
Saumya Jani ◽  
...  

AbstractWe compared the phenotype, diversity, and antigen specificity of T cells in the breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 mRNA vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor (TCR) sequence overlap was limited between blood and breastmilk. Overabundant breastmilk clones were observed in all individuals, were structurally diverse, and contained CDR3 sequences with known epitope specificity including to SARS-CoV-2 Spike. Spike-specific TCRs were more frequent in breastmilk compared to blood and expanded in breastmilk following a third mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for infant passive protection.SummaryThe breastmilk T cell repertoire is distinct and enriched for SARS-CoV-2 Spike-specificity after maternal mRNA vaccination.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erin Chille ◽  
Emma Strand ◽  
Mayaan Neder ◽  
Valeria Schmidt ◽  
Madeleine Sherman ◽  
...  

Abstract Background Maternal mRNA provisioning of oocytes regulates early embryogenesis. Maternal transcripts are degraded as zygotic genome activation (ZGA) intensifies, a phenomenon known as the maternal-to-zygotic transition (MZT). Here, we examine gene expression over nine developmental stages in the Pacific rice coral, Montipora capitata, from eggs and embryos at 1, 4, 9, 14, 22, and 36 h-post-fertilization (hpf), as well as swimming larvae (9d), and adult colonies. Results Weighted Gene Coexpression Network Analysis revealed four expression peaks, identifying the maternal complement, two waves of the MZT, and adult expression. Gene ontology enrichment revealed maternal mRNAs are dominated by cell division, methylation, biosynthesis, metabolism, and protein/RNA processing and transport functions. The first MZT wave occurs from ~4-14 hpf and is enriched in terms related to biosynthesis, methylation, cell division, and transcription. In contrast, functional enrichment in the second MZT wave, or ZGA, from 22 hpf-9dpf, includes ion/peptide transport and cell signaling. Finally, adult expression is enriched for functions related to signaling, metabolism, and ion/peptide transport. Our proposed MZT timing is further supported by expression of enzymes involved in zygotic transcriptional repression (Kaiso) and activation (Sox2), which peak at 14 hpf and 22 hpf, respectively. Further, DNA methylation writing (DNMT3a) and removing (TET1) enzymes peak and remain stable past ~4 hpf, suggesting that methylome programming occurs before 4 hpf. Conclusions Our high-resolution insight into the coral maternal mRNA and MZT provides essential baseline information to understand parental carryover effects and the sensitivity of developmental success under increasing environmental stress.


Author(s):  
Ying Wang ◽  
Tianhao Feng ◽  
Mingcong Zhu ◽  
Xiaodan Shi ◽  
Zerui Wang ◽  
...  

Abstract Infertility affects 10% - 15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. A resent study showed that PABPN1L recruited BTG4 to mRNA 3′-poly(A) tails and was essential for maternal mRNA degradation. Here, we generated an PABPN1L-antibody and found “ring-like” PABPN1L aggregates in the cytoplasm of MII oocytes. PABPN1L-EGFP proteins spontaneously formed“ring-like” aggregates in vitro. This phenomenon is similar with CCR4–NOT catalytic subunit, CNOT7, when it starts deadenylation process in vitro. We constructed two mouse model (Pabpn1l  −/− and Pabpn1l  tm1a/tm1a) simulating the intron1-exon2 abnormality of human PABPN1L and found that the female was sterile and the male was fertile. Using RNA-Seq, we observed a large-scale up-regulation of RNA in zygotes derived from Pabpn1l−/− MII oocytes. We found that 9222 genes were up-regulated instead of being degraded in the Pabpn1l-♀/+♂zygote. Both the Btg4 and Cnot61 genes are necessary for the deadenylation process and Pabpn1l  −/− resembled both the Btg4 and Cnot6l knockouts, where 71.2% genes stabilized in the Btg4-♀/+♂ zygote and 84.2% genes stabilized in the Cnot6l-♀/+♂zygote were also stabilized in Pabpn1l-♀/+♂ zygote. BTG4/CNOT7/CNOT6L was partially co-located with PABPN1L in MII oocytes. The above results suggest that PABPN1L is widely associated with CCR4–NOT-mediated maternal mRNA degradation and PABPN1L variants on intron1-exon2 could be a genetic marker of female infertility. Summary sentence. “Ring-like” PABPN1L aggregates was found in the cytoplasm of MII oocytes and in vitro; intron1-exon2 abnormality of Pabpn1l leads female sterile in mice.


Development ◽  
2021 ◽  
Author(s):  
Mansour Aboelenain ◽  
Karen Schindler

Mammalian oocytes are transcriptionally quiescent, and meiosis and early embryonic divisions rely on translation of stored maternal mRNAs. Activation of these mRNAs is mediated by polyadenylation. Cytoplasmic polyadenylation binding element 1 (CPEB1) regulates activates mRNA polyadenylation. One message is Aurora kinase C (Aurkc), encoding a protein that regulates chromosome segregation. We previously demonstrated that AURKC levels are upregulated in oocytes lacking Aurora kinase B (AURKB), and this upregulation caused increased aneuploidy rates, a role we investigate here. Using genetic and pharmacologic approaches, we found that AURKB negatively regulates CPEB1-dependent translation of many messages. To determine why translation is increased, we evaluated Aurora kinase A (AURKA), a kinase that activates CPEB1 in other organisms. We find that AURKA activity is increased in Aurkb knockout oocytes and demonstrate that this increase drives the excess translation. Importantly, removal of one copy of Aurka from the Aurkb knockout strain background, reduces aneuploidy rates. This study demonstrates that AURKA is required for CPEB1-dependent translation, and it describes a new AURKB requirement to maintain translation levels through AURKA, a function critical to generating euploid eggs.


2021 ◽  
Author(s):  
Fabrice G Petit ◽  
Soazik P Jamin ◽  
Pierre-Yves Kernanec ◽  
Guillaume Halet ◽  
Michael Primig

The mouse 3′-5′ exoribonuclease EXOSC10/Rrp6 is required for rRNA processing, gametogenesis, brain development, erythropoiesis and blood cell enhancer function. The human ortholog is essential for mitosis in cancer cells and its enzymatic activity is inhibited by the anti-cancer drug 5-fluorouracil. Little is known, however, about the role of Exosc10 during embryo development and organogenesis. We generated an Exosc10 knockout model and find that Exosc10-/- mice show an embryonic lethal phenotype. We demonstrate that Exosc10 maternal mRNA is present in mutant oocytes and that the gene is expressed during early embryogenesis. Furthermore, we observe that EXOSC10 localizes to the periphery of nucleolar precursor bodies and nucleoli in blastomeres, which is consistent with the protein's role in rRNA processing. Finally, we infer from genotyping data obtained with samples harvested at embryonic days e7.5, e6.5 and e4.5 and embryos cultured in vitro that Exosc10-/- mutants arrest at the eight-cell embryo/morula transition. Our results demonstrate a novel essential role for Exosc10 during early embryogenesis, and they are consistent with earlier work showing that impaired ribosome biogenesis causes a developmental arrest at the morula stage.


2021 ◽  
pp. jmedgenet-2021-107933
Author(s):  
Wei Zheng ◽  
Qian-Qian Sha ◽  
Huiling Hu ◽  
Fei Meng ◽  
Qinwei Zhou ◽  
...  

BackgroundRecurrent preimplantation embryo developmental arrest (RPEA) is the most common cause of assisted reproductive technology treatment failure associated with identified genetic abnormalities. Variants in known maternal genes can only account for 20%–30% of these cases. The underlying genetic causes for the other affected individuals remain unknown.MethodsWhole exome sequencing was performed for 100 independent infertile females that experienced RPEA. Functional characterisations of the identified candidate disease-causative variants were validated by Sanger sequencing, bioinformatics and in vitro functional analyses, and single-cell RNA sequencing of zygotes.ResultsBiallelic variants in ZFP36L2 were associated with RPEA and the recurrent variant (p.Ser308_Ser310del) prevented maternal mRNA decay in zygotes and HeLa cells.ConclusionThese findings emphasise the relevance of the relationship between maternal mRNA decay and human preimplantation embryo development and highlight a novel gene potentially responsible for RPEA, which may facilitate genetic diagnoses.


2021 ◽  
Author(s):  
Mingtian Deng ◽  
Baobao Chen ◽  
Zifei Liu ◽  
Yongjie Wan ◽  
Dongxu Li ◽  
...  

Abstract Background: In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to zygotic transition (MZT) is critical for pre-implantation. Y-box binding protein YBX1 plays vital roles in RNA stabilization and transcriptional regulation, but its roles in pre-implantation development remain to be elucidated. The objective of this study is to investigate the role and the molecular mechanisms of YBX1 during MZT.Methods: RNA-seq datasets in mice, human, bovine, and goat embryos were re-analyzed. YBX1 was knocked down by siRNA microinjection. The 8-cell stage embryos were collected for RNA-seq. The differentially expressed genes and alternative splicing (AS) events were identified using DESeq2 and rMATs, respectively. GO/KEGG/GSEA enrichment analysis was performed using clusterProfiler and enrichplot. Furthermore, 5-EU staining was performed to confirm the effect of YBX1 knockdown on transcriptional activity.Results: The expression of YBX1 was increased during MZT in goat, bovine, human, and mice. By microinjection of siRNA against YBX1, we successfully knocked down YBX1, and the embryo development was impaired in YBX1 knockdown embryos. Using RNA-seq, we identified 1623 up-regulated and 3531 down-regulated genes in the 8-cell stage YBX1 knockdown embryos. Of note, the down-regulated genes were enriched in regulation of RNA/mRNA stability and spliceosome, suggesting that YBX1 might medicate RNA stability and AS. To this end, we identified 3284 differential AS events and 1322 differentially expressed maternal mRNAs at the 8-cell stage YBX1 knockdown embryos. Meanwhile, the splicing factors and mRNA decay related showed aberrant expression. Moreover, the transcriptional activity during ZGA in goat and mice was compromised when YBX1 was knocked down.Conclusion: Our results identify that YBX1 serves an important role in maternal mRNA decay, alternative splicing, and the transcriptional activity required for early embryogenesis, which will broaden the current understanding of YBX1 functions during the stochastic reprogramming events.


Author(s):  
Yusheng Liu ◽  
Hu Nie ◽  
Chuanxin Zhang ◽  
Zhenzhen Hou ◽  
Jiaqiang Wang ◽  
...  

AbstractTranscription is silent during the mammalian oocyte-to-embryo transition (OET) until zygotic genome activation (ZGA). Therefore, the OET relies on post-transcriptional regulation of maternal mRNA, among which poly(A) tail lengths have been found to regulate translation for a small number of genes1–3. However, transcriptome-wide poly(A) tail length dynamics and their role in gene expression during the mammalian OET remain unknown. Here, we quantified transcriptome-wide mRNA poly(A) tail length dynamics during the mammalian OET using PAIso-seq1 and PAIso-seq24,5, two methods with different underlying principles that preserve the poly(A) tail information. We revealed that poly(A) tail length was highly dynamic during the mouse OET, and Btg4 is responsible for global maternal mRNA deadenylation. We found that the poly(A) tail length positively associated with translational efficiency transcriptome-wide in mouse oocytes. In addition, genes with different alternative polyadenylation isoforms show longer poly(A) tails for isoforms with distal polyadenylation sites compared to those with proximal polyadenylation sites in mouse, rat, pig and human oocytes after meiotic resumption, which is not seen in cultured cell lines. Surprisingly, mammalian embryos, namely mouse, rat, pig, and human embryos, all experience highly conserved global mRNA re-polyadenylation after fertilization, providing molecular evidence that the early embryo development before ZGA is driven by re-polyadenylated maternal mRNAs rather than newly transcribed mRNAs. Together, our study reveals the conserved mRNA poly(A) tail length landscape. This resource can be used for exploring spatiotemporal post-transcriptional regulation throughout the mammalian OET.


Sign in / Sign up

Export Citation Format

Share Document