scholarly journals GENETIC ANALYSIS OF PRODUCTS OF PROTOPLAST FUSION IN SACCHAROMYCES CEREVISIAE

1978 ◽  
Vol 53 (1) ◽  
pp. 41-49 ◽  
Author(s):  
NORIO GUNGE ◽  
ATSUKO TAMARU
1989 ◽  
Vol 9 (1) ◽  
pp. 329-331
Author(s):  
M Winey ◽  
I Edelman ◽  
M R Culbertson

Saccharomyces cerevisiae glutamine tRNA(CAG) is encoded by an intronless, single-copy gene, SUP60. We have imposed a requirement for splicing in the biosynthesis of this tRNA by inserting a synthetic intron in the SUP60 gene. Genetic analysis demonstrated that the interrupted gene produces a functional, mature tRNA product in vivo.


1994 ◽  
Vol 14 (10) ◽  
pp. 6789-6796 ◽  
Author(s):  
J Tu ◽  
M Carlson

We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.


Cell ◽  
1987 ◽  
Vol 48 (5) ◽  
pp. 801-812 ◽  
Author(s):  
Douglas Koshland ◽  
Lisa Rutledge ◽  
Molly Fitzgerald-Hayes ◽  
Leland H. Hartwell

Genetics ◽  
1985 ◽  
Vol 111 (2) ◽  
pp. 233-241
Author(s):  
Joachim F Ernst ◽  
D Michael Hampsey ◽  
Fred Sherman

ABSTRACT ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G·C additions at sites containing monotonous runs of three G·C base pairs. However, some (see PDF) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G·C base pairs.


Genetics ◽  
2005 ◽  
Vol 172 (3) ◽  
pp. 1499-1509 ◽  
Author(s):  
Zheng Wang ◽  
Grace Marie Jones ◽  
Gregory Prelich

Sign in / Sign up

Export Citation Format

Share Document