A synthetic intron in a naturally intronless yeast pre-tRNA is spliced efficiently in vivo

1989 ◽  
Vol 9 (1) ◽  
pp. 329-331
Author(s):  
M Winey ◽  
I Edelman ◽  
M R Culbertson

Saccharomyces cerevisiae glutamine tRNA(CAG) is encoded by an intronless, single-copy gene, SUP60. We have imposed a requirement for splicing in the biosynthesis of this tRNA by inserting a synthetic intron in the SUP60 gene. Genetic analysis demonstrated that the interrupted gene produces a functional, mature tRNA product in vivo.

1989 ◽  
Vol 9 (1) ◽  
pp. 329-331 ◽  
Author(s):  
M Winey ◽  
I Edelman ◽  
M R Culbertson

Saccharomyces cerevisiae glutamine tRNA(CAG) is encoded by an intronless, single-copy gene, SUP60. We have imposed a requirement for splicing in the biosynthesis of this tRNA by inserting a synthetic intron in the SUP60 gene. Genetic analysis demonstrated that the interrupted gene produces a functional, mature tRNA product in vivo.


1996 ◽  
Vol 134 (3) ◽  
pp. 715-729 ◽  
Author(s):  
C Ruhrberg ◽  
M A Hajibagheri ◽  
M Simon ◽  
T P Dooley ◽  
F M Watt

The cornified envelope is a layer of transglutaminase cross-linked protein that is deposited under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We present the sequence of one of the cornified envelope precursors, a protein with an apparent molecular mass of 210 kD. The 210-kD protein is translated from a 6.5-kb mRNA that is transcribed from a single copy gene. The mRNA was upregulated during suspension-induced terminal differentiation of cultured human keratinocytes. Like other envelope precursors, the 210-kD protein became insoluble in SDS and beta-mercaptoethanol on activation of transglutaminases in cultured keratinocytes. The protein was expressed in keratinizing and nonkeratinizing stratified squamous epithelia, but not in simple epithelia or nonepithelial cells. Immunofluorescence staining showed that in epidermal keratinocytes, both in vivo and in culture, the protein was upregulated during terminal differentiation and partially colocalized with desmosomal proteins. Immunogold EM confirmed the colocalization of the 210-kD protein and desmoplakin at desmosomes and on keratin filaments throughout the differentiated layers of the epidermis. Sequence analysis showed that the 210-kD protein is homologous to the keratin-binding proteins desmoplakin, bullous pemphigoid antigen 1, and plectin. These data suggest that the 210-kD protein may link the cornified envelope to desmosomes and keratin filaments. We propose that the 210-kD protein be named "envoplakin."


Author(s):  
Stephan Hamperl ◽  
Christopher R. Brown ◽  
Jorge Perez-Fernandez ◽  
Katharina Huber ◽  
Manuel Wittner ◽  
...  

1986 ◽  
Vol 6 (12) ◽  
pp. 4419-4424 ◽  
Author(s):  
C Keierleber ◽  
M Wittekind ◽  
S L Qin ◽  
C S McLaughlin

We isolated a cloned DNA fragment containing PRT1, a gene required for the initiation of protein biosynthesis in Saccharomyces cerevisiae, by complementation of the temperature-sensitive prtl-1 mutation. The entire PRT1 gene is contained within a 3.2-kilobase-pair segment of the cloned DNA in YEp13 H1.2. Southern blot analysis demonstrated that PRT1 is a single copy gene which is transcribed into a 2.3-kilobase RNA. We determined the direction of transcription and mapped the 5' and 3' ends of the gene.


1986 ◽  
Vol 6 (12) ◽  
pp. 4419-4424
Author(s):  
C Keierleber ◽  
M Wittekind ◽  
S L Qin ◽  
C S McLaughlin

We isolated a cloned DNA fragment containing PRT1, a gene required for the initiation of protein biosynthesis in Saccharomyces cerevisiae, by complementation of the temperature-sensitive prtl-1 mutation. The entire PRT1 gene is contained within a 3.2-kilobase-pair segment of the cloned DNA in YEp13 H1.2. Southern blot analysis demonstrated that PRT1 is a single copy gene which is transcribed into a 2.3-kilobase RNA. We determined the direction of transcription and mapped the 5' and 3' ends of the gene.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

Genomics ◽  
1998 ◽  
Vol 48 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Yu-Ker Wang ◽  
Luis A. Pérez-Jurado ◽  
Uta Francke

2021 ◽  
Vol 9 (8) ◽  
pp. 1610
Author(s):  
Christian Klotz ◽  
Elke Radam ◽  
Sebastian Rausch ◽  
Petra Gosten-Heinrich ◽  
Toni Aebischer

Giardiasis in humans is a gastrointestinal disease transmitted by the potentially zoonotic Giardia duodenalis genotypes (assemblages) A and B. Small wild rodents such as mice and voles are discussed as potential reservoirs for G. duodenalis but are predominantly populated by the two rodent species Giardia microti and Giardia muris. Currently, the detection of zoonotic and non-zoonotic Giardia species and genotypes in these animals relies on cumbersome PCR and sequencing approaches of genetic marker genes. This hampers the risk assessment of potential zoonotic Giardia transmissions by these animals. Here, we provide a workflow based on newly developed real-time PCR schemes targeting the small ribosomal RNA multi-copy gene locus to distinguish G. muris, G. microti and G. duodenalis infections. For the identification of potentially zoonotic G. duodenalis assemblage types A and B, an established protocol targeting the single-copy gene 4E1-HP was used. The assays were specific for the distinct Giardia species or genotypes and revealed an analytical sensitivity of approximately one or below genome equivalent for the multi-copy gene and of about 10 genome equivalents for the single-copy gene. Retesting a biobank of small rodent samples confirmed the specificity. It further identified the underlying Giardia species in four out of 11 samples that could not be typed before by PCR and sequencing. The newly developed workflow has the potential to facilitate the detection of potentially zoonotic and non-zoonotic Giardia species in wild rodents.


Sign in / Sign up

Export Citation Format

Share Document