The Improvement of Addition of Inorganic Salt on the Wettability of Coal Dust by Chemical Dust Suppressant

2019 ◽  
Vol 09 (06) ◽  
pp. 870-877
Author(s):  
鹏 李
Keyword(s):  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jian He ◽  
Hao Shu ◽  
Lei Zhang ◽  
Lei Zhang ◽  
Yang Jia ◽  
...  

In order to improve the safety, operability, and cleanability of the dust suppressant, this paper uses the surfactant monomers selected in the previous experiment as the main material formula and adds the inorganic salt as the synergist to prepare the dust suppressant for the PMX. The wetting property of the solution was characterized by the surface tension and contact angle of the pressed coal pieces. The sedimentation experiment was used to screen the compounding system of the surfactant. Finally, the dust suppressant was used to reduce the dust of the PMX in the coal dust simulation system. The results show that (1) the surfactant compounding system can effectively improve the wetting property and the sedimentation time of coal dust. The fast penetration T (0.06%), SDBS (0.15%), and APG (0.20%) are the preferred main ingredients. (2) Adding inorganic salts on the basis of compounding, according to the effect of inorganic salts on the effect of dust suppressant, it is concluded that NaCl (1.00%) is the best synergist. (3) In order to save costs, reduce the amount of surfactant. According to the simulated dust reduction experiment, formula N: anionic surfactant SDBS (0.06%), anionic surfactant fast-permeability T (0.06%), and inorganic salt NaCl (1.00%) are the best for PMX dust fall.


2010 ◽  
Vol 9 (9) ◽  
pp. 1297-1304
Author(s):  
Alice Raducanu ◽  
Aurica Suvergel ◽  
George Darie ◽  
Ileana Rau ◽  
Constantin Grigoriu ◽  
...  

Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


Author(s):  
Виктория Владимировна Смирнякова ◽  
Валерий Витальевич Смирняков ◽  
Федор Александрович Орлов

Авторами приведены статистические данные об авариях, связанных со взрывами газа и пыли на горных предприятиях России. Показаны сравнительные результаты оценки причин аварийных ситуаций, проведенных статистическими методами и методами технического анализа. The authors provide statistics on accidents associated with gas and dust explosions at mining enterprises in Russia. Comparative results of the assessment of the emergencies causes conducted by statistical methods and technical analysis methods are shown.


Sign in / Sign up

Export Citation Format

Share Document