scholarly journals Preparation of Lignite Dust Suppressant by Compound Surfactants and Effect of Inorganic Salt on Dust Suppressant

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jian He ◽  
Hao Shu ◽  
Lei Zhang ◽  
Lei Zhang ◽  
Yang Jia ◽  
...  

In order to improve the safety, operability, and cleanability of the dust suppressant, this paper uses the surfactant monomers selected in the previous experiment as the main material formula and adds the inorganic salt as the synergist to prepare the dust suppressant for the PMX. The wetting property of the solution was characterized by the surface tension and contact angle of the pressed coal pieces. The sedimentation experiment was used to screen the compounding system of the surfactant. Finally, the dust suppressant was used to reduce the dust of the PMX in the coal dust simulation system. The results show that (1) the surfactant compounding system can effectively improve the wetting property and the sedimentation time of coal dust. The fast penetration T (0.06%), SDBS (0.15%), and APG (0.20%) are the preferred main ingredients. (2) Adding inorganic salts on the basis of compounding, according to the effect of inorganic salts on the effect of dust suppressant, it is concluded that NaCl (1.00%) is the best synergist. (3) In order to save costs, reduce the amount of surfactant. According to the simulated dust reduction experiment, formula N: anionic surfactant SDBS (0.06%), anionic surfactant fast-permeability T (0.06%), and inorganic salt NaCl (1.00%) are the best for PMX dust fall.

1989 ◽  
Vol 54 (10) ◽  
pp. 2644-2647 ◽  
Author(s):  
Petr Schneider ◽  
Jiří Rathouský

In porous materials filled with water or water solutions of inorganic salts, water freezes at lower temperatures than under normal conditions; the reason is the decrease of water vapor tension above the convex meniscus of liquid in pores. The freezing point depression is not very significant in pores with radii from 0.05 μm to 10 μm (about 0.01-2.5 K). Only in smaller pores, especially when filled with inorganic salt solutions, this depression is important.


2013 ◽  
Vol 13 (23) ◽  
pp. 11723-11734 ◽  
Author(s):  
Y. You ◽  
L. Renbaum-Wolff ◽  
A. K. Bertram

Abstract. As the relative humidity varies from high to low values in the atmosphere, particles containing organic species and inorganic salts may undergo liquid–liquid phase separation. The majority of the laboratory work on this subject has used ammonium sulfate as the inorganic salt. In the following we studied liquid–liquid phase separation in particles containing organics mixed with the following salts: ammonium sulfate, ammonium bisulfate, ammonium nitrate and sodium chloride. In each experiment one organic was mixed with one inorganic salt and the liquid–liquid phase separation relative humidity (SRH) was determined. Since we studied 23 different organics mixed with four different salts, a total of 92 different particle types were investigated. Out of the 92 types, 49 underwent liquid–liquid phase separation. For all the inorganic salts, liquid–liquid phase separation was never observed when the oxygen-to-carbon elemental ratio (O : C) &amp;geq; 0.8 and was always observed for O : C < 0.5. For 0.5 &amp;leq; O : C < 0.8, the results depended on the salt type. Out of the 23 organic species investigated, the SRH of 20 organics followed the trend: (NH4)2SO4 &amp;geq; NH4HSO4 &amp;geq; NaCl &amp;geq; NH4NO3. This trend is consistent with previous salting out studies and the Hofmeister series. Based on the range of O : C values found in the atmosphere and the current results, liquid–liquid phase separation is likely a frequent occurrence in both marine and non-marine environments.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yidan Jiang ◽  
Pengfei Wang ◽  
Ronghua Liu ◽  
Ye Pei ◽  
Gaogao Wu

Surfactants can improve the wetting performance of the dust-reduction spraying water, thus improving the dust-reduction effect by spray. In this study, the performance of surfactant solution in wetting coal dust was investigated through experiments. In addition, the effects of surfactant type, mass fraction, metamorphic degree of coal, particle size, and additives were investigated. According to the results of surface tension experiments, the surface tension of the solution decreased with the increase of the concentration of surfactant. However, after reaching CMC, the surface tension did not have significantly decrease. SDBS and OP-10 had higher efficiency in decreasing the surface tension than the other two types of surfactants. The addition of sodium sulfate additives can further reduce the surface tension of the surfactant solution by a limited range. The coal dust wetting experiment showed that with the increase in the concentration of the surfactant, the contact angle of the droplets on the coal dust tablet was continuously reduced, and the wettability of the solution was continuously improved. The wettability of the OP-10 solution was optimal. At the same concentration, the minimum contact angle can be obtained in the OP-10 solution. As the contact angle of the coal dust increased, the growth rate in the coal dust reverse osmosis moisture absorption of the surfactant solution relative to the pure water increased. After the addition of sodium sulfate, the reverse osmosis moisture absorption of coal dust increased to varying degrees. In addition, as the concentration of additives increased, the moisture absorption of coal dust increased.


Langmuir ◽  
2011 ◽  
Vol 27 (16) ◽  
pp. 9815-9822 ◽  
Author(s):  
Ting Lu ◽  
Lian’gen Xia ◽  
Xiaodong Wang ◽  
Aiqing Wang ◽  
Tao Zhang

2000 ◽  
Vol 54 (8) ◽  
pp. 1136-1141 ◽  
Author(s):  
J. Musick ◽  
W. Kiefer ◽  
J. Popp

The chemical reactions of water droplets containing dissolved salts and of solid salt particles with ammonia gas have been studied. The salts used were MgCl2*6H2O, KNO3, and MgSO4. In contrast to the irreversible formation of a solid ammonium chloride shell when MgCl2*6H2O dissolved in water droplets is used, we observed formation of solid microcrystals when using KNO3 together with ammonia, whereas no reaction was observed in the case of MgSO4. All three inorganic salts act similarly as a sink for ammonia gas, resulting in solid or dissolved NH4 components. Only the system KNO3/NH4NO3 can act as source dependent on the concentration of ammonia gas.


Author(s):  
Juan José Parajó ◽  
Pablo Vallet ◽  
Luis Miguel Varela ◽  
María Villanueva ◽  
Josefa Salgado

AbstractThe applicability of ionic liquids (ILs) has increased over the last years, and even new opportunities are becoming a reality, i.e. mixtures of pure IL and inorganic salt as electrolytes for smart electrochemical devices, yet the effects on the environment are almost unknown. In this work, the ecotoxicity of two pure protic ILs (Ethylammonium nitrate and Ethylimidazolium nitrate) and two pure aprotic ILs (butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide and butyldimethylimidazolium bis(trifluoromethylsulfonyl)imide) and that of their binary mixtures with inorganic salts with common cation was tested towards changes in the bioluminescence of the bacteria Aliivibrio fischeri, using the Microtox® standard toxicity test. EC50 of these mixtures was determined over three standard periods of time and compared with the corresponding values to pure ILs. Results indicate that the aprotic ILs are more toxic than protic and that aromatic are more toxic than non-aromatic. The addition of inorganic mono (LiNO3), di (Ca(NO3)2·4H2O, Mg(NO3)2·6H2O) and trivalent (Al(NO3)3·9H2O) salts in binary mixtures with EAN was analysed first. The latter was found to induce an important increase in toxicity. Finally, mixtures of IL-inorganic lithium salt (LiNO3, for the protic ILs and LiTFSI for the aprotic ILs) toxicity was also studied, which showed toxicity levels strongly dependent on the IL of the mixture.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1585
Author(s):  
Yongdong Xu ◽  
Tingshu He

The effects of different inorganic salt accelerators (CaBr2, NaBr, Ca(NO3)2, NaNO3) and an alkali-free liquid accelerator were researched at a low temperature of 10 °C. The results showed the effects of 1.5% NaBr and 1.5% NaNO3 inorganic accelerator were pronounced. The 1-d compressive strengths of the mortar with these two inorganic salts were increased by 185.8% and 184.2%, respectively, and the final setting times were shortened from 7.74 to 6.08 min and 6.12 min, respectively. The hydration temperatures at 10 °C were measured, and the promotion effects of the inorganic accelerators were calculated: the relationship between the hydration degree was αAS + NN > αAS + NB > αAS + CB > αAS + CN > αAS. In addition, the reaction of C3A with NaBr and NaNO3 was used to analyze the products in an ettringite phase, i.e., Ca4Al2O6Br210·H2O, 3CaOAl2O3Ca(NO3)2X·H2O. The formation of these phases was detected in the hydration products of the cement paste hydration for 12 h, 24 h, and 28 d. Combined with the mass loss of the ettringite phase at 90–120 °C, determined using TG/DTG, the synergetic acceleration mechanism of the inorganic accelerators was comprehensively inferred.


2021 ◽  
Author(s):  
Juan José Parajó ◽  
Pablo Vallet ◽  
Luis Miguel Varela ◽  
María Villanueva ◽  
Josefa SALGADO

Abstract The applicability of ionic liquids (ILs) has been increased during the last years and even new opportunities are becoming a reality, i.e. mixtures of pure IL and inorganic salt as electrolytes for smart electrochemical devices, but the effects on environment are almost unknown. In this work, the ecotoxicity of two pure protic ILs (Ethylammonium nitrate and Ethylimidazolium nitrate) and two pure aprotic ILs (butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide and butyldimethylimidazolium bis(trifluoromethylsulfonyl)imide) and that of their binary mixtures with inorganic salts with common cation was tested towards changes on the bioluminescence of the bacteria Aliivibrio fischeri, using the Microtox® standard toxicity test. EC50 of these mixtures was determined over three standard periods of time and compared with the corresponding values to pure ILs. Results indicate that the aprotic ILs are more toxic than protic and that aromatic are more toxic than non-aromatic. The addition of inorganic mono (LiNO3), di (Ca(NO3)2·4H2O, Mg(NO3)2·6H2O) and trivalent (Al(NO3)3·9H2O) salts in binary mixtures with EAN was firstly analysed, obtaining that the latter induces an important increase on toxicity. Finally, mixtures of IL- inorganic lithium salt (LiNO3, for the protic ILs and LiTFSI for the aprotic ILs) toxicity was also studied, which resulted strongly dependent on the IL of the mixture.


Sign in / Sign up

Export Citation Format

Share Document