Relation-Driven Stock Trend Prediction Model Based on Time Convolutional Network

2021 ◽  
Vol 11 (10) ◽  
pp. 2555-2567
Author(s):  
戈 赵
2014 ◽  
Vol 962-965 ◽  
pp. 564-569 ◽  
Author(s):  
Yan Chao Shao ◽  
Liang Jun Xu ◽  
Yan Zhu Hu ◽  
Xin Bo Ai

Pressure monitoring is an important means to reflect the running status of the natural gas desulphurization process. By using the data mining technology, the interaction relationships between the pressure and other monitoring parameters are analyzed in this paper. A pressure trend prediction model is established to show the pressure status in the natural gas desulfurization process. Firstly, the theory of Principal Component Analysis (PCA) is used to reduce the dimensions of measured data from traditional Supervisory Control and Data Acquisition (SCADA) system. Secondly the principal components are taken as input data into the pressure trend prediction model based on multiple regression theory of Support Vector Regression (SVR). Finally the accuracy and the generalization ability of the model are tested by the measured data obtained from SCADA system. Compared with other prediction models, pressure trend prediction model based on PCA and SVR gets smaller MSE and higher correlation. The pressure trend prediction model gets better generalization ability and stronger robustness, and is an effective complement to SCADA system in the natural gas desulphurization process.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012069
Author(s):  
Zhaozhao Zhang ◽  
Yuhao Ye ◽  
Lihong Dong

Abstract For the problem of low prediction accuracy caused by traditional neural network gas concentration prediction models which did not consider temporal and spatial characteristics of gas data, this paper proposed a Spatial-Temporal graph neural network gas prediction model based on Spatial-Temporal data. Its essence was the integration of graph convolutional network and WaveNet network. In spatial dimension, graph convolutional network was used to aggregate the information of neighbor nodes, and adaptively adjusts the spatial association strength of each node according to the attention mechanism to captured the spatial characteristics of gas data. In temporal dimension, WaveNet network model was introduced, Dilated Causal Convolution was used to extract the temporal characteristics of gas data on temporal dimensions. According to the distance between gas sensors in the mine, the gas data spatial structure was constructed by Thresholded Gaussian kernel function. Experiment with the measured gas temporal and spatial data, using Mean Absolute Error (MAE) as an indicator of predictive accuracy. The experimental results show that the prediction model mentioned in this paper is significantly improved compared with the prediction accuracy of other predictive models.


Sign in / Sign up

Export Citation Format

Share Document