Pressure Prediction in Natural Gas Desulfurization Process Based on PCA and SVR

2014 ◽  
Vol 962-965 ◽  
pp. 564-569 ◽  
Author(s):  
Yan Chao Shao ◽  
Liang Jun Xu ◽  
Yan Zhu Hu ◽  
Xin Bo Ai

Pressure monitoring is an important means to reflect the running status of the natural gas desulphurization process. By using the data mining technology, the interaction relationships between the pressure and other monitoring parameters are analyzed in this paper. A pressure trend prediction model is established to show the pressure status in the natural gas desulfurization process. Firstly, the theory of Principal Component Analysis (PCA) is used to reduce the dimensions of measured data from traditional Supervisory Control and Data Acquisition (SCADA) system. Secondly the principal components are taken as input data into the pressure trend prediction model based on multiple regression theory of Support Vector Regression (SVR). Finally the accuracy and the generalization ability of the model are tested by the measured data obtained from SCADA system. Compared with other prediction models, pressure trend prediction model based on PCA and SVR gets smaller MSE and higher correlation. The pressure trend prediction model gets better generalization ability and stronger robustness, and is an effective complement to SCADA system in the natural gas desulphurization process.

2013 ◽  
Vol 351-352 ◽  
pp. 1306-1311 ◽  
Author(s):  
Jing Yang Liu ◽  
He Zhi Liu

Arch dam has gradually evolved as one of dam type as main large-scale hydraulic project, dam deformation prediction is an important part of dam safety monitoring, and it is difficult to forecast because of the complicated nonlinear characteristics of the monitoring data. Support Vector Machine (SVM) could solve the small sample, nonlinear high dimension problem due to the excellent generalization ability, and hence it has been widely used in the forecast of arch dam deformation. However, the forecast results considerably depend on the choice of SVM model parameters. In this paper, Particle Swarm Optimization (PSO), which has the characteristic of fast global optimization, was applied to optimize the parameters in SVM, and then the dam deformation prediction model based on PSO-SVM could be established. The model is applied to a certain arch dam foundation prediction. The accuracy of this employed approach was examined by comparing it with multiple regression method. In a word, the experimental results indicate that the proposed method based on PSO-SVM can be used in arch dam deformation prediction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miao Fan ◽  
Ashutosh Sharma

PurposeIn order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.Design/methodology/approachIn the competitive growth and industries 4.0, the prediction in the cost plays a key role.FindingsAt the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.Originality/valueThe prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.


Sign in / Sign up

Export Citation Format

Share Document