HAZOP-Based Risk Assessment Method for Large-Scale Ammonia Refrigeration System

2021 ◽  
Vol 10 (04) ◽  
pp. 175-182
Author(s):  
胜利 孙
2021 ◽  
Author(s):  
Shin-Ping Lee ◽  
Yuan-Jung Tsai ◽  
Yun-Chung Tsang ◽  
Ching-Ya Tsai ◽  
Shang-Ming Wang ◽  
...  

<p>Under climate change impact, the frequency of extreme hydrological events increases. The occurrence of extreme rainfall events may lead to large-scale flooding or sediment disasters resulting in serious property damage and casualties. Large-scale sediment disasters include large-scale landslides and debris flows which are the main types of disasters causing casualties. In Taiwan, during Typhoon Morakot in 2009, the long duration and high-intensity rainfall led to a large-scale sediment disaster resulting in heavy casualties. A disaster with certain magnitude and complexity cannot be coped with a single disaster management approach. In this study, a risk assessment method considering climate change impacts proposed by the Intergovernmental Panel on Climate Change (IPCC) was adopted. By analyzing hazard, exposure, and vulnerability indicators of large-scale sediment disasters in Xinfa catchment of Kaohsiung City, Taiwan, a disaster risk adaptation strategy was proposed based on the impact of disaster factors.</p><p>Two scenarios were applied for the catchment sediment hazards risk assessments including 50-year recurrence period (high frequency and low impact) and extreme scenario (low frequency and high impact). Multiple factors for hazard (impact area of landslides and debris flows), exposure (lifeline roads and land use intensity), and vulnerability (disaster prevention and relief resources and settlement population characteristics) assessments were considered. The correlation factor selection and weighting analysis was calibrated by the 2009 Typhoon Morakot event. All disaster-recorded locations were above moderate risk indicating that the risk assessment method was reasonable. A risk map for Xinfa catchment was completed based on the validated risk assessment model to identify the high-risk settlements. After analyzing the spatial characteristics and disaster risk impact factors of high-risk settlements, both software and hardware disaster prevention measures and adaptation strategies were suggested. According to the analyzed results, although the hardware measures were effective in reducing sediment hazards generally, under extreme hydrologic events, those measures could be ineffective due to limited protection capacity of the engineering facilities. Hence, reducing exposure and vulnerability is essential to deal with the impact of extreme events.</p><p><strong>Keywords</strong>: <strong>Large-scale sediment disasters, Risk assessment, Adaptation strategies</strong></p>


2020 ◽  
Vol 34 (5) ◽  
pp. 627-640 ◽  
Author(s):  
Shi Xianwu ◽  
Qiu Jufei ◽  
Chen Bingrui ◽  
Zhang Xiaojie ◽  
Guo Haoshuang ◽  
...  

Author(s):  
Zuzhen Ji ◽  
Dirk Pons ◽  
John Pearse

Successful implementation of Health and Safety (H&S) systems requires an effective mechanism to assess risk. Existing methods focus primarily on measuring the safety aspect; the risk of an accident is determined based on the product of severity of consequence and likelihood of the incident arising. The health component, i.e., chronic harm, is more difficult to assess. Partially, this is due to both consequences and the likelihood of health issues, which may be indeterminate. There is a need to develop a quantitative risk measurement for H&S risk management and with better representation for chronic health issues. The present paper has approached this from a different direction, by adopting a public health perspective of quality of life. We have then changed the risk assessment process to accommodate this. This was then applied to a case study. The case study showed that merely including the chronic harm scales appeared to be sufficient to elicit a more detailed consideration of hazards for chronic harm. This suggests that people are not insensitive to chronic harm hazards, but benefit from having a framework in which to communicate them. A method has been devised to harmonize safety and harm risk assessments. The result was a comprehensive risk assessment method with consideration of safety accidents and chronic health issues. This has the potential to benefit industry by making chronic harm more visible and hence more preventable.


2021 ◽  
Vol 420 ◽  
pp. 129893
Author(s):  
Zijian Liu ◽  
Wende Tian ◽  
Zhe Cui ◽  
Honglong Wei ◽  
Chuankun Li

2021 ◽  
Vol 102 ◽  
pp. 102134
Author(s):  
Junjiang He ◽  
Tao Li ◽  
Beibei Li ◽  
Xiaolong Lan ◽  
Zhiyong Li ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hamid Reza Marateb ◽  
Maja von Cube ◽  
Ramin Sami ◽  
Shaghayegh Haghjooy Javanmard ◽  
Marjan Mansourian ◽  
...  

Abstract Background Already at hospital admission, clinicians require simple tools to identify hospitalized COVID-19 patients at high risk of mortality. Such tools can significantly improve resource allocation and patient management within hospitals. From the statistical point of view, extended time-to-event models are required to account for competing risks (discharge from hospital) and censoring so that active cases can also contribute to the analysis. Methods We used the hospital-based open Khorshid COVID Cohort (KCC) study with 630 COVID-19 patients from Isfahan, Iran. Competing risk methods are used to develop a death risk chart based on the following variables, which can simply be measured at hospital admission: sex, age, hypertension, oxygen saturation, and Charlson Comorbidity Index. The area under the receiver operator curve was used to assess accuracy concerning discrimination between patients discharged alive and dead. Results Cause-specific hazard regression models show that these baseline variables are associated with both death, and discharge hazards. The risk chart reflects the combined results of the two cause-specific hazard regression models. The proposed risk assessment method had a very good accuracy (AUC = 0.872 [CI 95%: 0.835–0.910]). Conclusions This study aims to improve and validate a personalized mortality risk calculator based on hospitalized COVID-19 patients. The risk assessment of patient mortality provides physicians with additional guidance for making tough decisions.


Sign in / Sign up

Export Citation Format

Share Document