An Association Rule Extraction Method Based on Attribute Partial Order Structure Diagrams

2021 ◽  
Vol 11 (02) ◽  
pp. 112-120
Author(s):  
秋婷 王
2011 ◽  
Vol 7 (3) ◽  
pp. 88-101 ◽  
Author(s):  
DongHong Sun ◽  
Li Liu ◽  
Peng Zhang ◽  
Xingquan Zhu ◽  
Yong Shi

Due to the flexibility of multi-criteria optimization, Regularized Multiple Criteria Linear Programming (RMCLP) has received attention in decision support systems. Numerous theoretical and empirical studies have demonstrated that RMCLP is effective and efficient in classifying large scale data sets. However, a possible limitation of RMCLP is poor interpretability and low comprehensibility for end users and experts. This deficiency has limited RMCLP’s use in many real-world applications where both accuracy and transparency of decision making are required, such as in Customer Relationship Management (CRM) and Credit Card Portfolio Management. In this paper, the authors present a clustering based rule extraction method to extract explainable and understandable rules from the RMCLP model. Experiments on both synthetic and real world data sets demonstrate that this rule extraction method can effectively extract explicit decision rules from RMCLP with only a small compromise in performance.


Author(s):  
Nicolas Pasquier

In the domain of knowledge discovery in databases and its computational part called data mining, many works addressed the problem of association rule extraction that aims at discovering relationships between sets of items (binary attributes). An example association rule fitting in the context of market basket data analysis is cereal Ù milk ® sugar (support 10%, confidence 60%). This rule states that 60% of customers who buy cereals and sugar also buy milk, and that 10% of all customers buy all three items. When an association rule support and confidence exceed some user-defined thresholds, the rule is considered relevant to support decision making. Association rule extraction has proved useful to analyze large databases in a wide range of domains, such as marketing decision support; diagnosis and medical research support; telecommunication process improvement; Web site management and profiling; spatial, geographical, and statistical data analysis; and so forth.


2020 ◽  
Vol 86 ◽  
pp. 105941 ◽  
Author(s):  
Sutong Wang ◽  
Yuyan Wang ◽  
Dujuan Wang ◽  
Yunqiang Yin ◽  
Yanzhang Wang ◽  
...  

2019 ◽  
Vol 9 (12) ◽  
pp. 2411 ◽  
Author(s):  
Guido Bologna

Classification responses provided by Multi Layer Perceptrons (MLPs) can be explained by means of propositional rules. So far, many rule extraction techniques have been proposed for shallow MLPs, but not for Convolutional Neural Networks (CNNs). To fill this gap, this work presents a new rule extraction method applied to a typical CNN architecture used in Sentiment Analysis (SA). We focus on the textual data on which the CNN is trained with “tweets” of movie reviews. Its architecture includes an input layer representing words by “word embeddings”, a convolutional layer, a max-pooling layer, followed by a fully connected layer. Rule extraction is performed on the fully connected layer, with the help of the Discretized Interpretable Multi Layer Perceptron (DIMLP). This transparent MLP architecture allows us to generate symbolic rules, by precisely locating axis-parallel hyperplanes. Experiments based on cross-validation emphasize that our approach is more accurate than that based on SVMs and decision trees that substitute DIMLPs. Overall, rules reach high fidelity and the discriminative n-grams represented in the antecedents explain the classifications adequately. With several test examples we illustrate the n-grams represented in the activated rules. They present the particularity to contribute to the final classification with a certain intensity.


Sign in / Sign up

Export Citation Format

Share Document