Research on Fault Prediction Model of Rotating Machinery Based on Deep Neural Network

2021 ◽  
Vol 10 (01) ◽  
pp. 68-73
Author(s):  
莉丽 潘
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhixiang Wang ◽  
Jiange Li ◽  
Zhengqi Zhang ◽  
Youxiang Zuo

This study proposes a prediction model for accurately detecting styrene-butadiene-styrene (SBS) content in modified asphalt using the deep neural network (DNN). Traditional methods used for evaluating the SBS content are inaccurate and complicated because they are prone to produce errors by manual computation. Feature data of SBS content are derived from the spectra, which are obtained by the Fourier-transform infrared spectroscopy test. After designing DNN, preprocessed feature data are utilized as training and testing data and are fed into the DNN via a feature matrix. Furthermore, comparative studies are conducted to verify the accuracy of the proposed model. Results show that the mean square error value decreased by 68% for DNN with noise and dimension reduction. The DNN-based prediction model showed that the correlation coefficient between the target value and the mean predicted value is 0.9978 and 0.9992 for training and testing samples, respectively, indicating its remarkable accuracy and applicability after training. In comparison with the standard curve method and the random forest method, the precision of DNN is greater than 98% for the same test conditions, achieving the best predicting performance.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1620 ◽  
Author(s):  
Ganjar Alfian ◽  
Muhammad Syafrudin ◽  
Norma Latif Fitriyani ◽  
Muhammad Anshari ◽  
Pavel Stasa ◽  
...  

Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension–diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7109
Author(s):  
Chengying Zhao ◽  
Xianzhen Huang ◽  
Yuxiong Li ◽  
Muhammad Yousaf Iqbal

In recent years, prognostic and health management (PHM) has played an important role in industrial engineering. Efficient remaining useful life (RUL) prediction can ensure the development of maintenance strategies and reduce industrial losses. Recently, data-driven based deep learning RUL prediction methods have attracted more attention. The convolution neural network (CNN) is a kind of deep neural network widely used in RUL prediction. It shows great potential for application in RUL prediction. A CNN is used to extract the features of time-series data according to the spatial feature method. This way of processing features without considering the time dimension will affect the prediction accuracy of the model. On the contrary, the commonly used long short-term memory (LSTM) network considers the timing of the data. However, compared with CNN, it lacks spatial data extraction capabilities. This paper proposes a double-channel hybrid prediction model based on the CNN and a bidirectional LSTM network to avoid those drawbacks. The sliding time window is used for data preprocessing, and an improved piece-wise linear function is used for model validating. The prediction model is evaluated using the C-MAPSS dataset provided by NASA. The predicted results show the proposed prediction model to have a better prediction performance compared with other state-of-the-art models.


Sign in / Sign up

Export Citation Format

Share Document