A Fast Evaluation Method of Land Quality Based on Multi-Band Remote Sensing Images—Take the Example of Farmland Quality Evaluation in Qiyang County

2019 ◽  
Vol 07 (02) ◽  
pp. 26-38
Author(s):  
松 周
Sensors ◽  
2017 ◽  
Vol 17 (10) ◽  
pp. 2427 ◽  
Author(s):  
Han Gao ◽  
Yunwei Tang ◽  
Linhai Jing ◽  
Hui Li ◽  
Haifeng Ding

2022 ◽  
Vol 14 (2) ◽  
pp. 295
Author(s):  
Kunyong Yu ◽  
Zhenbang Hao ◽  
Christopher J. Post ◽  
Elena A. Mikhailova ◽  
Lili Lin ◽  
...  

Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sensing images. However, few studies have evaluated the accuracy of different individual tree detection (ITD) algorithms and their data and processing requirements. This study explored the accuracy of ITD using local maxima (LM) algorithm, marker-controlled watershed segmentation (MCWS), and Mask Region-based Convolutional Neural Networks (Mask R-CNN) in a young plantation forest with different test images. Manually delineated tree crowns from UAV imagery were used for accuracy assessment of the three methods, followed by an evaluation of the data processing and application requirements for three methods to detect individual trees. Overall, Mask R-CNN can best use the information in multi-band input images for detecting individual trees. The results showed that the Mask R-CNN model with the multi-band combination produced higher accuracy than the model with a single-band image, and the RGB band combination achieved the highest accuracy for ITD (F1 score = 94.68%). Moreover, the Mask R-CNN models with multi-band images are capable of providing higher accuracies for ITD than the LM and MCWS algorithms. The LM algorithm and MCWS algorithm also achieved promising accuracies for ITD when the canopy height model (CHM) was used as the test image (F1 score = 87.86% for LM algorithm, F1 score = 85.92% for MCWS algorithm). The LM and MCWS algorithms are easy to use and lower computer computational requirements, but they are unable to identify tree species and are limited by algorithm parameters, which need to be adjusted for each classification. It is highlighted that the application of deep learning with its end-to-end-learning approach is very efficient and capable of deriving the information from multi-layer images, but an additional training set is needed for model training, robust computer resources are required, and a large number of accurate training samples are necessary. This study provides valuable information for forestry practitioners to select an optimal approach for detecting individual trees.


Author(s):  
Yue Ma ◽  
Guoqing Li ◽  
Xiaochuang Yao ◽  
Jin Ben ◽  
Qianqian Cao ◽  
...  

With the rapid development of earth observation, satellite navigation, mobile communication and other technologies, the order of magnitude of the spatial data we acquire and accumulate is increasing, and higher requirements are put forward for the application and storage of spatial data. Under this circumstance, a new form of spatial data organization emerged-the global discrete grid. This form of data management can be used for the efficient storage and application of large-scale global spatial data, which is a digital multi-resolution the geo-reference model that helps to establish a new model of data association and fusion. It is expected to make up for the shortcomings in the organization, processing and application of current spatial data. There are different types of grid system according to the grid division form, including global discrete grids with equal latitude and longitude, global discrete grids with variable latitude and longitude, and global discrete grids based on regular polyhedrons. However, there is no accuracy evaluation index system for remote sensing images expressed on the global discrete grid to solve this problem. This paper is dedicated to finding a suitable way to express remote sensing data on discrete grids, and establishing a suitable accuracy evaluation system for modeling remote sensing data based on hexagonal grids to evaluate modeling accuracy. The results show that this accuracy evaluation method can evaluate and analyze remote sensing data based on hexagonal grids from multiple levels, and the comprehensive similarity coefficient of the images before and after conversion is greater than 98%, which further proves that the availability hexagonal grid-based remote sensing data of remote sensing images. And among the three sampling methods, the image obtained by the nearest interpolation sampling method has the highest correlation with the original image.


2014 ◽  
Vol 651-653 ◽  
pp. 1315-1319 ◽  
Author(s):  
Dong Ping Li ◽  
Jun Gong ◽  
Jing Yi Li ◽  
Shan Shan Guo

To meet the technical demands of rapid assessment on small and medium earthquake damages, this paper presents the comprehensive disaster evaluation method of on-spot human-computer interaction survey and remote sensing image analysis based on the GIS technology support in the small and medium earthquakes. By making full use of the advantages of existing data, emphasizing on the automatical identification of the unique texture features of small earthquakes with a combination analysis on high resolution images gained from unmanned aerial vehicles (uav) and the seismic damages, the new method results in the rank distribution of earthquakes by gaining the experienced parameter of local small-medium earthquakes based on the analysis of regional characteristics of texture features of remote sensing images. It is concluded that the evaluation method is more accurate and efficient for small and medium earthquake rapid disaster assessment.


2015 ◽  
Author(s):  
Bangyong Qin ◽  
Ren Shang ◽  
Shengyang Li ◽  
Baoqin Hei ◽  
Zhiwen Liu

Author(s):  
Tong Wang ◽  
Hemeng Yang ◽  
Ling Zhu ◽  
Yazhou Fan ◽  
Xue Yang ◽  
...  

Remote sensing technology is an effective tool for sensing the earth’s surface. With the continuous improvement of remote sensing technology, remote sensing detectors can obtain more spectral and spatial information, including clear feature contours, complex texture features and spatial layout rules. This information was detected in mineral resources. Surface substance identification, water pollution information monitoring and many other aspects have played an important role. The coding algorithm and defects, storage algorithm and interference from atmospheric cloud radiation information during the imaging process lead to varying degrees of distortion and deterioration of remote sensing images during imaging, transmission and storage. This makes it difficult to process, analyze and apply remote sensing images. Therefore, the design of a reasonable remote sensing image quality evaluation method is not only conducive to the remote sensing image quality evaluation in the real-time processing system of remote sensing image, but also conducive to the optimization of remote sensing image system and image processing algorithm. The application is worthwhile. In this paper, the deteriorating features of remote sensing images will change the statistical distribution. We propose a method for evaluating the quality of remote sensing images in depth learning. Feature learning and blurring as well as noise intensity classification for image remote sensing using convolutional neural network are carried out. The evaluation model is modified by masking effect and perceptual weighting factor, and the quality evaluation results of remote sensing images are obtained according to human vision. The research shows that this method can effectively solve the problem of removing and evaluating the noise of remote sensing image, and can effectively and accurately evaluate the quality of remote sensing image. It is also consistent with subjective assessment and human perception.


Author(s):  
G. H. Wang ◽  
H. B. Wang ◽  
W. F. Fan ◽  
Y. Liu ◽  
H. J. Liu

High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.


Sign in / Sign up

Export Citation Format

Share Document