scholarly journals Parafermionic behavior of Bose-Einstein condensates

2019 ◽  
Vol 21 ◽  
pp. 71
Author(s):  
A. Martinou ◽  
D. Bonatsos

Bright solitons of 7Li atoms in a quasi one-dimensional optical trap, formed in a stable Bose–Einstein condensate in which the interactions have been magnetically tuned from repulsive to attractive, have been seen to exhibit repulsive interactions among them when set in motion by offsetting the optical potential. Solving first the Gross–Pitaevskii equation for the special conditions corresponding to the experiment, we show then that this system can be described in terms of generalized parafermionic oscillators, the order of the parafermions being related to the strength of the interaction among the atoms and being a measure of the bosonic behavior vs. the fermionic behavior of the system.

2003 ◽  
Vol 68 (1) ◽  
Author(s):  
Shun-Jin Wang ◽  
Cheng-Long Jia ◽  
Dun Zhao ◽  
Hong-Gang Luo ◽  
Jun-Hong An

2018 ◽  
Vol 32 (29) ◽  
pp. 1850352
Author(s):  
Ying Wang ◽  
Shuyu Zhou

We theoretically studied the sonic horizon formation problem for coupled one-dimensional Bose–Einstein condensate trapped in an external elongated harmonic potential. Based on the coupled (1[Formula: see text]+[Formula: see text]1)-dimensional Gross–Pitaevskii equation and F-expansion method under Thomas–Fermi formulation, we derived analytical wave functions of a two-component system, from which the sonic horizon’s occurrence criteria and location were derived and graphically demonstrated. The theoretically derived results of sonic horizon formation agree pretty well with that from the numerically calculated values.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 141-146 ◽  
Author(s):  
Zhenyun Qina ◽  
Gui Mu

The Gross-Pitaevskii equation (GPE) describing the dynamics of a Bose-Einstein condensate at absolute zero temperature, is a generalized form of the nonlinear Schr¨odinger equation. In this work, the exact bright one-soliton solution of the one-dimensional GPE with time-dependent parameters is directly obtained by using the well-known Hirota method under the same conditions as in S. Rajendran et al., Physica D 239, 366 (2010). In addition, the two-soliton solution is also constructed effectively


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Song ◽  
Yu Mo ◽  
Shiping Feng ◽  
Shi-Jie Yang

Dark solitons dynamically generated from a potential moving in a one-dimensional Bose-Einstein condensate are displayed. Based on numerical simulations of the Gross-Pitaevskii equation, we find that the moving obstacle successively emits a series of solitons which propagate at constant speeds. The dependence of soliton emission on the system parameters is examined. The formation mechanism of solitons is interpreted as interference between a diffusing wavepacket and the condensate background, enhanced by the nonlinear interactions.PACS numbers: 03.75.Mn, 03.75.Lm, 05.30.Jp


10.14311/1797 ◽  
2013 ◽  
Vol 53 (3) ◽  
Author(s):  
Holger Cartarius ◽  
Dennis Dast ◽  
Daniel Haag ◽  
Günter Wunner ◽  
Rüdiger Eichler ◽  
...  

We investigate the Gross-Pitaevskii equation for a Bose-Einstein condensate in a PT symmetric double-well potential by means of the time-dependent variational principle and numerically exact solutions. A one-dimensional and a fully three-dimensional setup are used. Stationary states are determined and the propagation of wave function is investigated using the time-dependent Gross-Pitaevskii equation. Due to the nonlinearity of the Gross-Pitaevskii equation the potential dependson the wave function and its solutions decide whether or not the Hamiltonian itself is PT symmetric. Stationary solutions with real energy eigenvalues fulfilling exact PT symmetry are found as well as PT broken eigenstates with complex energies. The latter describe decaying or growing probability amplitudes and are not true stationary solutions of the time-dependent Gross-Pitaevskii equation. However, they still provide qualitative information about the time evolution of the wave functions.


Sign in / Sign up

Export Citation Format

Share Document