Sonic horizon formation for coupled one-dimensional Bose–Einstein condensate in an elongated harmonic potential

2018 ◽  
Vol 32 (29) ◽  
pp. 1850352
Author(s):  
Ying Wang ◽  
Shuyu Zhou

We theoretically studied the sonic horizon formation problem for coupled one-dimensional Bose–Einstein condensate trapped in an external elongated harmonic potential. Based on the coupled (1[Formula: see text]+[Formula: see text]1)-dimensional Gross–Pitaevskii equation and F-expansion method under Thomas–Fermi formulation, we derived analytical wave functions of a two-component system, from which the sonic horizon’s occurrence criteria and location were derived and graphically demonstrated. The theoretically derived results of sonic horizon formation agree pretty well with that from the numerically calculated values.

Author(s):  
Yunsong Guo ◽  
Yubin Jiao ◽  
Xiaoning Liu ◽  
Xiangbo Zhu ◽  
Ying Wang

In this study, we investigate the evolution of vortex in harmonically trapped two-component coupled Bose–Einstein condensate with quintic-order nonlinearity. We derive the vortex solution of this two-component system based on the coupled quintic-order Gross–Pitaevskii equation model and the variational method. It is found that the evolution of vortex is a metastable state. The radius of vortex soliton shrinks and expands with time, resulting in periodic breathing oscillation, and the angular frequency of the breathing oscillation is twice the value of the harmonic trapping frequency under infinitesimal nonlinear strength. At the same time, it is also found that the higher-order nonlinear term has a quantitative effect rather than a qualitative impact on the oscillation period. With practical experimental setting, we identify the quasi-stable oscillation of the derived vortex evolution mode and illustrated its features graphically. The theoretical results developed in this work can be used to guide the experimental observation of the vortex phenomenon in ultracold coupled atomic systems with quintic-order nonlinearity.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 232
Author(s):  
Christos Charalambous ◽  
Miguel Ángel García-March ◽  
Gorka Muñoz-Gil ◽  
Przemysław Ryszard Grzybowski ◽  
Maciej Lewenstein

We study the diffusive behavior of a Bose polaron immersed in a coherently coupled two-component Bose-Einstein Condensate (BEC). We assume a uniform, one-dimensional BEC. Polaron superdiffuses if it couples in the same manner to both components, i.e. either attractively or repulsively to both of them. This is the same behavior as that of an impurity immersed in a single BEC. Conversely, the polaron exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively to the other. The anomalous diffusion exponent and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components, and with the coupling strength of the impurity to the BEC.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1412
Author(s):  
Adán J. Serna-Reyes ◽  
Jorge E. Macías-Díaz ◽  
Nuria Reguera

This manuscript introduces a discrete technique to estimate the solution of a double-fractional two-component Bose–Einstein condensate. The system consists of two coupled nonlinear parabolic partial differential equations whose solutions are two complex functions, and the spatial fractional derivatives are interpreted in the Riesz sense. Initial and homogeneous Dirichlet boundary data are imposed on a multidimensional spatial domain. To approximate the solutions, we employ a finite difference methodology. We rigorously establish the existence of numerical solutions along with the main numerical properties. Concretely, we show that the scheme is consistent in both space and time as well as stable and convergent. Numerical simulations in the one-dimensional scenario are presented in order to show the performance of the scheme. For the sake of convenience, A MATLAB code of the numerical model is provided in the appendix at the end of this work.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 141-146 ◽  
Author(s):  
Zhenyun Qina ◽  
Gui Mu

The Gross-Pitaevskii equation (GPE) describing the dynamics of a Bose-Einstein condensate at absolute zero temperature, is a generalized form of the nonlinear Schr¨odinger equation. In this work, the exact bright one-soliton solution of the one-dimensional GPE with time-dependent parameters is directly obtained by using the well-known Hirota method under the same conditions as in S. Rajendran et al., Physica D 239, 366 (2010). In addition, the two-soliton solution is also constructed effectively


2019 ◽  
Vol 21 ◽  
pp. 71
Author(s):  
A. Martinou ◽  
D. Bonatsos

Bright solitons of 7Li atoms in a quasi one-dimensional optical trap, formed in a stable Bose–Einstein condensate in which the interactions have been magnetically tuned from repulsive to attractive, have been seen to exhibit repulsive interactions among them when set in motion by offsetting the optical potential. Solving first the Gross–Pitaevskii equation for the special conditions corresponding to the experiment, we show then that this system can be described in terms of generalized parafermionic oscillators, the order of the parafermions being related to the strength of the interaction among the atoms and being a measure of the bosonic behavior vs. the fermionic behavior of the system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Song ◽  
Yu Mo ◽  
Shiping Feng ◽  
Shi-Jie Yang

Dark solitons dynamically generated from a potential moving in a one-dimensional Bose-Einstein condensate are displayed. Based on numerical simulations of the Gross-Pitaevskii equation, we find that the moving obstacle successively emits a series of solitons which propagate at constant speeds. The dependence of soliton emission on the system parameters is examined. The formation mechanism of solitons is interpreted as interference between a diffusing wavepacket and the condensate background, enhanced by the nonlinear interactions.PACS numbers: 03.75.Mn, 03.75.Lm, 05.30.Jp


10.14311/1797 ◽  
2013 ◽  
Vol 53 (3) ◽  
Author(s):  
Holger Cartarius ◽  
Dennis Dast ◽  
Daniel Haag ◽  
Günter Wunner ◽  
Rüdiger Eichler ◽  
...  

We investigate the Gross-Pitaevskii equation for a Bose-Einstein condensate in a PT symmetric double-well potential by means of the time-dependent variational principle and numerically exact solutions. A one-dimensional and a fully three-dimensional setup are used. Stationary states are determined and the propagation of wave function is investigated using the time-dependent Gross-Pitaevskii equation. Due to the nonlinearity of the Gross-Pitaevskii equation the potential dependson the wave function and its solutions decide whether or not the Hamiltonian itself is PT symmetric. Stationary solutions with real energy eigenvalues fulfilling exact PT symmetry are found as well as PT broken eigenstates with complex energies. The latter describe decaying or growing probability amplitudes and are not true stationary solutions of the time-dependent Gross-Pitaevskii equation. However, they still provide qualitative information about the time evolution of the wave functions.


Sign in / Sign up

Export Citation Format

Share Document