Digital twin-driven complexity management in intelligent manufacturing

Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 9
Author(s):  
Yuchen Wang ◽  
Xingzhi Wang ◽  
Fei Tao ◽  
Ang Liu

Complexity management is one of the most crucial and challenging issues in manufacturing. As an emerging technology, digital twin provides an innovative approach to manage complexity in a more autonomous, analytical and comprehensive manner. This paper proposes an innovative framework of digital twin-driven complexity management in intelligent manufacturing. The framework will cover three sources of manufacturing complexity, including product design, production lines and supply chains. Digital twin provides three services to manage complexity: (1) real-time monitors and data collections; (2) identifications, diagnoses and predictions of manufacturing complexity; (3) fortification of human-machine interaction. A case study of airplane manufacturing is presented to illustrate the proposed framework.

2020 ◽  
Vol 13 (2) ◽  
pp. 321
Author(s):  
Mildrend Montoya-Reyes ◽  
Alvaro González-Angeles ◽  
Ismael Mendoza-Muñoz ◽  
Margarita Gil-Samaniego-Ramos ◽  
Juan Ling-López

Purpose: The purpose of this work is to present a method based on the application of method engineering, in order to eliminate downtime and improve the manufacturing cell.Design/methodology/approach: The research strategy employed was a case study applied to a manufacturing company to explore the causes of excessive dead time and low productivity. The methodology used was divided in five steps. The first corresponds to the analysis of the lathe and grinding process; the second is the elaboration of the man-machine diagram to identify dead times; the third is the application of the improvement proposal; the fourth is the redistribution of the cell to optimize the process; the fifth is to conclude from the results obtained.Findings: With the proposed method, the downtime was reduced by 41% and only 50% of the available labor is required, therefore, it is concluded that the method can be used to redesign manufacturing cells.Research limitations/implications: This research was limited to analyzing and improving human-machine interaction, since work is not just the machine, or the individual alone, or the individual manipulating the machine, therefore, no other tools were used to improve the time of machines operation.Practical implications: Designing a manufacturing cell that allows the operator to do his job with less fatigue and not adapt the operator to the job, as commonly happens.Social implications: Companies must show a greater interest in occupational health by including human capital in their optimization plans to avoid future harm to workers.Originality/value: The key contribution of this paper focused on developing a novel and practical methodology to design or re-design manufacturing cells to improve productivity considering the human factor, inspired by the main concepts of method engineering.


2020 ◽  
Vol 10 (21) ◽  
pp. 7758
Author(s):  
Alessandro Greco ◽  
Mario Caterino ◽  
Marcello Fera ◽  
Salvatore Gerbino

Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.


Procedia CIRP ◽  
2019 ◽  
Vol 83 ◽  
pp. 789-793 ◽  
Author(s):  
Xin Ma ◽  
Fei Tao ◽  
Meng Zhang ◽  
Tian Wang ◽  
Ying Zuo

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 13
Author(s):  
Ana María Valdeón Junquera ◽  
Javier García González ◽  
Joaquín Manuel Villanueva Balsera ◽  
Vicente Rodríguez Montequín

Smart Manufacturing is a goal to be achieved, and the most advanced manufacturing approaches are being used to pursue this objective. Within this context, industry development aims to attain an intelligent manufacturing using, for example, virtual models that simulate production lines. This paper presents the architecture of a Digital Twin for emulating the rolls replacement process within a wire rod rolling mill. The model is developed in Python, using a backtracking algorithm to select the suitable set of rolls as a first basic approach for the validation of the system. It may be used in the future to improve the production system automating the decision for the replacement of rolls as alternative to the current human-decision process.


2020 ◽  
Vol 52 ◽  
pp. 215-220
Author(s):  
Christoph Petzoldt ◽  
Jasper Wilhelm ◽  
Nils Hendrik Hoppe ◽  
Lennart Rolfs ◽  
Thies Beinke ◽  
...  

Author(s):  
Fabio Grandi ◽  
Margherita Peruzzini ◽  
Roberto Raffaeli ◽  
Marcello Pellicciari

Successful interaction with complex systems is based on the system ability to satisfy the user needs during interaction tasks, mainly related to performances, physical comfort, usability, accessibility, visibility, and mental workload. However, the “real” user experience (UX) is hidden and usually difficult to detect. The paper proposes a Transdisciplinary Assessment Matrix (TAS) based on collection of physiological, postural and visibility data during interaction analysis, and calculation of a consolidated User eXperience Index (UXI). Physiological data are based on heart rate parameters and eye pupil dilation parameters; postural data consists of analysis of main anthropometrical parameters; and interaction data from the system CAN-bus. Such a method can be adopted to assess interaction on field, during real task execution, or within simulated environments. It has been applied to a simulated case study focusing on agricultural machinery control systems, involving users with a different level of expertise. Results showed that TAS is able to validly objectify UX and can be used for industrial cases.


2019 ◽  
Vol 55 ◽  
pp. 77-81 ◽  
Author(s):  
Hoon Ko ◽  
Jong Youl Hong ◽  
Sangheon Kim ◽  
Libor Mesicek ◽  
In Seop Na

Sign in / Sign up

Export Citation Format

Share Document