scholarly journals Sex-difference affects disease progression in the MRMT-1 model of cancer-induced bone pain

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 445
Author(s):  
Sarah Falk ◽  
Tamara Al-Dihaissy ◽  
Laura Mezzanotte ◽  
Anne-Marie Heegaard

An overwhelming amount of evidence demonstrates sex-induced variation in pain processing, and has thus increased the focus on sex as an essential parameter for optimization of in vivo models in pain research. Mammary cancer cells are often used to model metastatic bone pain in vivo, and are commonly used in both males and females. Here we demonstrate that compared to males, females have an increased capacity for recovery following inoculation of MRMT-1 mammary cells, thus potentially causing a sex-dependent bias of the progression of the pain state.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 445
Author(s):  
Sarah Falk ◽  
Tamara Al-Dihaissy ◽  
Laura Mezzanotte ◽  
Anne-Marie Heegaard

An overwhelming amount of evidence demonstrates sex-induced variation in pain processing, and has thus increased the focus on sex as an essential parameter for optimization of in vivo models in pain research. Mammary cancer cells are often used to model metastatic bone pain in vivo, and are commonly used in both males and females. Here we demonstrate that compared to male rats, female rats have an increased capacity for recovery following inoculation of MRMT-1 mammary cells, thus potentially causing a sex-dependent bias in interpretation of the data.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 445 ◽  
Author(s):  
Sarah Falk ◽  
Tamara Al-Dihaissy ◽  
Laura Mezzanotte ◽  
Anne-Marie Heegaard

An overwhelming amount of evidence demonstrates sex-induced variation in pain processing, and has thus increased the focus on sex as an essential parameter for optimization of in vivo models in pain research. Mammary cancer cells are often used to model metastatic bone pain in vivo, and are commonly used in both males and females. Here we demonstrate that compared to male rats, female rats have an increased capacity for recovery following inoculation of MRMT-1 mammary cells, thus potentially causing a sex-dependent bias in interpretation of the data.


1998 ◽  
Vol 25 (3) ◽  
pp. 279-287 ◽  
Author(s):  
Fayez M Swailem ◽  
Gerbail T Krishnamurthy ◽  
Suresh C Srivastava ◽  
Maria L Aguirre ◽  
Dawn L Ellerson ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Linjie Ju ◽  
Peipei Hu ◽  
Ping Chen ◽  
Jiejie Wu ◽  
Zhuoqun Li ◽  
...  

Metastatic bone pain is characterized by insufferable bone pain and abnormal bone structure. A major goal of bone cancer treatment is to ameliorate osteolytic lesion induced by tumor cells. Corydalis saxicola Bunting total alkaloids (CSBTA), the alkaloid compounds extracted from the root of C. saxicola Bunting, have been shown to possess anticancer and analgesic properties. In this study, we aimed to verify whether CSBTA could relieve cancer induced bone pain and inhibit osteoclastogenesis. The in vivo results showed that CSBTA ameliorated Walker 256 induced bone pain and osteoporosis in rats. Histopathological changes also supported that CSBTA inhibited Walker 256 cell-mediated osteolysis. Further in vitro analysis confirmed that CSBTA reduced the expression of RANKL and downregulate the level of RANKL/OPG ratio in breast cancer cells. Moreover, CSBTA could inhibit osteoclastogenesis by suppressing RANKL-induced NF-κB and c-Fos/NFATc1 pathways. Collectively, this study demonstrated that CSBTA could attenuate cancer induced bone pain via a novel mechanism. Therefore, CSBTA might be a promising candidate drug for metastatic bone pain patients.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document