scholarly journals Hypothesis on the pathophysiology of syringomyelia based on analysis of phase-contrast magnetic resonance imaging of Chiari-I malformation patients

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 996
Author(s):  
Han Soo Chang

Background: Despite a number of hypotheses, our understanding of the pathophysiology of syringomyelia is still limited. The current prevailing hypothesis assumes that the piston-like movement of the cerebellar tonsils drives the cerebrospinal fluid (CSF) into the syrinx through the spinal perivascular space. However, it still needs to be verified by further experimental data. A major unexplained problem is how CSF enters and remains in the syrinx that has a higher pressure than the subarachnoid space. Methods: I analyzed phase-contrast MRI scans of 18 patients with Chiari-I malformation with syringomyelia undergoing foramen magnum decompression and 21 healthy volunteers. I analyzed the velocity waveforms of the CSF and the brain in various locations. The obtained velocity waveforms were post-processed using a technique called synchronization in situ. I compared between the preoperative data and the control data (case-control study), as well as between the preoperative and postoperative data (cohort study). Results: The syrinx shrank in 17 (94%) patients with good clinical improvement. In Chiari-I patients, the velocity of the tonsil was significantly larger than controls, but was significantly smaller than that of the CSF in the subarachnoid space, suggesting passive rather than active movement. The abnormal tonsillar movement disappeared after surgery, but the velocity waveform of the spinal subarachnoid CSF did not change. These results, contradicting the above mentioned hypothesis, required an alternative explanation. I thus hypothesized that there is a CSF channel between the fourth ventricle and the syrinx. This channel assumes one-way valve function when mildly compressed by the cyclical movement of the cerebellar tonsil. The decompression of the tonsils switches off the one-way valve, collapsing the syrinx. Conclusions: My hypothesis reasonably explained my data that clearly contradicted the existing hypothesis, and successfully addressed the above-mentioned theoretical problem. It will serve as a working hypothesis for further study of syringomyelia pathophysiology.

1999 ◽  
Vol 91 (4) ◽  
pp. 553-562 ◽  
Author(s):  
John D. Heiss ◽  
Nicholas Patronas ◽  
Hetty L. DeVroom ◽  
Thomas Shawker ◽  
Robert Ennis ◽  
...  

Object. Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy.Methods. The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing.Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressure and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape.Conclusions. The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-1 laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.


1999 ◽  
Vol 7 (2) ◽  
pp. E1 ◽  
Author(s):  
John D. Heiss ◽  
Nicholas Patronas ◽  
Hetty L. DeVroom ◽  
Thomas Shawker ◽  
Robert Ennis ◽  
...  

Object Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy. Methods The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing. Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressuree and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape. Conclusions The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-1 laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.


2017 ◽  
Vol 10 ◽  
pp. 150-154 ◽  
Author(s):  
Tetsuryu Mitsuyama ◽  
Yasuo Aihara ◽  
Takaomi Taira ◽  
Seiichiro Eguchi ◽  
Kentaro Chiba ◽  
...  

2015 ◽  
Vol 16 (2) ◽  
pp. 138-145 ◽  
Author(s):  
Travis R. Ladner ◽  
Michael C. Dewan ◽  
Matthew A. Day ◽  
Chevis N. Shannon ◽  
Luke Tomycz ◽  
...  

OBJECT Osseous anomalies of the craniocervical junction are hypothesized to precipitate the hindbrain herniation observed in Chiari I malformation (CM-I). Previous work by Tubbs et al. showed that posterior angulation of the odontoid process is more prevalent in children with CM-I than in healthy controls. The present study is an external validation of that report. The goals of our study were 3-fold: 1) to externally validate the results of Tubbs et al. in a different patient population; 2) to compare how morphometric parameters vary with age, sex, and symptomatology; and 3) to develop a correlative model for tonsillar ectopia in CM-I based on these measurements. METHODS The authors performed a retrospective review of 119 patients who underwent posterior fossa decompression with duraplasty at the Monroe Carell Jr. Children’s Hospital at Vanderbilt University; 78 of these patients had imaging available for review. Demographic and clinical variables were collected. A neuroradiologist retrospectively evaluated preoperative MRI examinations in these 78 patients and recorded the following measurements: McRae line length; obex displacement length; odontoid process parameters (height, angle of retroflexion, and angle of retroversion); perpendicular distance to the basion-C2 line (pB–C2 line); length of cerebellar tonsillar ectopia; caudal extent of the cerebellar tonsils; and presence, location, and size of syringomyelia. Odontoid retroflexion grade was classified as Grade 0, > 90°; Grade I,85°–89°; Grade II, 80°–84°; and Grade III, < 80°. Age groups were defined as 0–6 years, 7–12 years, and 13–17 years at the time of surgery. Univariate and multivariate linear regression analyses, Kruskal-Wallis 1-way ANOVA, and Fisher’s exact test were performed to assess the relationship between age, sex, and symptomatology with these craniometric variables. RESULTS The prevalence of posterior odontoid angulation was 81%, which is almost identical to that in the previous report (84%). With increasing age, the odontoid height (p < 0.001) and pB–C2 length (p < 0.001) increased, while the odontoid process became more posteriorly inclined (p = 0.010). The pB–C2 line was significantly longer in girls (p = 0.006). These measurements did not significantly correlate with symptomatology. Length of tonsillar ectopia in pediatric CM-I correlated with an enlarged foramen magnum (p = 0.023), increasing obex displacement (p = 0.020), and increasing odontoid retroflexion (p < 0.001). CONCLUSIONS Anomalous bony development of the craniocervical junction is a consistent feature of CM-I in children. The authors found that the population at their center was characterized by posterior angulation of the odontoid process in 81% of cases, similar to findings by Tubbs et al. (84%). The odontoid process appeared to lengthen and become more posteriorly inclined with age. Increased tonsillar ectopia was associated with more posterior odontoid angulation, a widened foramen magnum, and an inferiorly displaced obex.


2019 ◽  
pp. 57-64
Author(s):  
Yiping Li ◽  
Bermans J. Iskandar

Chiari I malformation (CIM) is defined by pathological herniation of the cerebellar tonsils below the foramen magnum. Operative intervention for CIM is generally undertaken to treat neurological deficits associated with tonsillar herniation or with associated syringomyelia. A complete brain and spine MRI is indicated to rule out associated abnormalities and to identify and the presence and extent of syringomyelia. The type of surgical decompression remains controversial but may include bone-only decompression, bony decompression followed by duraplasty, and bony decompression followed by duraplasty and tonsillar shrinkage. Post-operative monitoring for CSF leakage, inadequate decompression, subtle chronic craniocervical instability, and hydrocephalus is critical.


Neurosurgery ◽  
2012 ◽  
Vol 71 (2) ◽  
pp. 365-380 ◽  
Author(s):  
Jörg Klekamp

Abstract BACKGROUND: Foramen magnum decompression is widely accepted as the treatment of choice for Chiari I malformation. However, important surgical details of the procedure are controversial. OBJECTIVE: This study analyzes 371 decompressions focusing on intraoperative findings, analysis of complications, and long-term outcomes. METHODS: Among 644 patients between 1985 and 2010, 359 patients underwent 371 decompressions. Surgery for symptomatic patients consisted of suboccipital craniectomy, C1 laminectomy, arachnoid dissection, and duraplasty. Short-term results were determined after 3 months; long-term outcomes were evaluated with Kaplan-Meier statistics. RESULTS: The mean age was 40 ± 16 years; mean follow-up was 49 ± 56 months; 75.8% demonstrated syringomyelia. The complication rate was 21.8% with permanent surgical morbidity of 3.2% and surgical mortality of 1.3%. Of the patients, 73.6% reported improvement after 3 months; 21% were unchanged. Overall, 14.3% demonstrated a neurological deterioration within 5 years and 15.4% within 10 years. The severity of neurological symptoms correlated with the grade of arachnoid pathology. Outcome data correlated with the number of previous decompressions, severity of arachnoid pathology, handling of the arachnoid, type of duraplasty, and surgical experience. First-time decompressions with arachnoid dissection and an alloplastic duraplasty resulted in surgical morbidity for 2.0%, a 0.9% mortality rate, postoperative improvement after 3 months for 82%, and neurological recurrence rates of 7% after 5 years and 8.7% after 10 years. CONCLUSION: Arachnoid pathology in Chiari I malformation has an impact on clinical symptoms and postoperative results. Decompressions with arachnoid dissection and an alloplastic duraplasty performed by surgeons experienced with this pathology offer a favorable long-term prognosis.


Sign in / Sign up

Export Citation Format

Share Document