Chiari Malformation with Syringomyelia

2019 ◽  
pp. 57-64
Author(s):  
Yiping Li ◽  
Bermans J. Iskandar

Chiari I malformation (CIM) is defined by pathological herniation of the cerebellar tonsils below the foramen magnum. Operative intervention for CIM is generally undertaken to treat neurological deficits associated with tonsillar herniation or with associated syringomyelia. A complete brain and spine MRI is indicated to rule out associated abnormalities and to identify and the presence and extent of syringomyelia. The type of surgical decompression remains controversial but may include bone-only decompression, bony decompression followed by duraplasty, and bony decompression followed by duraplasty and tonsillar shrinkage. Post-operative monitoring for CSF leakage, inadequate decompression, subtle chronic craniocervical instability, and hydrocephalus is critical.

1999 ◽  
Vol 91 (4) ◽  
pp. 553-562 ◽  
Author(s):  
John D. Heiss ◽  
Nicholas Patronas ◽  
Hetty L. DeVroom ◽  
Thomas Shawker ◽  
Robert Ennis ◽  
...  

Object. Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy.Methods. The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing.Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressure and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape.Conclusions. The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-1 laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.


2019 ◽  
Vol 10 (01) ◽  
pp. 85-88 ◽  
Author(s):  
Ghanshyam Das Singhal ◽  
Shakti Singhal ◽  
Gunjan Agrawal ◽  
Deepti Singhal ◽  
Vipin Arora

ABSTRACT Objective: The objective of this study was to retrospectively study Chiari I malformation patients (<18 years) treated surgically. Materials and Methods: Chiari I malformation patients (<18 years) treated surgically at our institute were retrospectively studied. Results: During the study period between January 1999 and June 2011, fifty patients, aged ≤18 years with Chiari malformation, were treated surgically and formed the basis for this series. There were 21 female children (42%) and 29 male children (58%), with a female-to-male ratio of 1:1. At the last follow-up, oropharyngeal symptoms were improved in 33% (n = 3/9). Headache/neck/back pain improved in 69.56% of children (n = 16/23). Upper-extremity pain/weakness/numbness improved in 73.91% of children (n = 17/23). Ataxia improved in 66.66% of children (n = 4/6). Lower-limb weakness/hyperreflexia improved in 83.33% of children (n = 5/6). At follow-up, magnetic resonance imaging for patients with syrinx was available for 75% of patients (n = 30/50) and not available for 25% of patients (n = 10/40). Syrinx was diminished in size or resolved in 66.33% of patients (n = 19/30) and the remaining was same for 36.66% of patients (n = 11/30). Conclusions: The main goal of surgery is to arrest the progression of neurological deficits. Foramen magnum decompression with a lax duroplasty is the surgical procedure of choice.


1999 ◽  
Vol 7 (2) ◽  
pp. E1 ◽  
Author(s):  
John D. Heiss ◽  
Nicholas Patronas ◽  
Hetty L. DeVroom ◽  
Thomas Shawker ◽  
Robert Ennis ◽  
...  

Object Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy. Methods The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing. Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressuree and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape. Conclusions The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-1 laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.


Neurosurgery ◽  
2004 ◽  
Vol 54 (1) ◽  
pp. 224-227 ◽  
Author(s):  
Toshitaka Seki ◽  
Kazutoshi Hida ◽  
JangBo Lee ◽  
Yoshinobu Iwasaki

Abstract OBJECTIVE AND IMPORTANCE Approximately 20 to 50% of patients with syringomyelia associated with Chiari malformations exhibit cranial nerve or cerebellar symptoms. However, hiccups represent a rare clinical manifestation of this disorder. We report a case of intractable hiccups resulting from syringobulbia associated with a Chiari I malformation, which was successfully treated with foramen magnum decompression. CLINICAL PRESENTATION We report the case of a patient who presented with syringomyelia and syringobulbia associated with a Chiari I malformation, manifested as intractable hiccups and neurological deficits. Magnetic resonance imaging scans demonstrated syringobulbia in the dorsal medullary region and a large cervical syrinx from C2 to C6–C7, associated with a Chiari I malformation. INTERVENTION Foramen magnum decompression and a C1 laminectomy were performed. One month later, the intractable hiccups disappeared and the neurological symptoms demonstrated improvement. CONCLUSION Postoperative magnetic resonance imaging scans demonstrated enlargement of the subarachnoid space in the posterior fossa and disappearance of the syringobulbia. There has been no recurrence of intractable hiccups and syringobulbia in 6 months after surgery. Magnetic resonance imaging of the brainstem is an important diagnostic procedure for intractable hiccups, because syringobulbia associated with a Chiari malformation represents a surgically treatable disorder, although the incidence is low.


2001 ◽  
Vol 11 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Aditya Pandey ◽  
Shenandoah Robinson ◽  
Alan R. Cohen

Object The authors describe a series of children with Chiari I malformation who presented with fulminating symptoms of “cerebellar fits” characterized by drop attacks with or without deterioration of consciousness, opisthotonic posturing, and varying degrees of respiratory compromise. Methods A retrospective analysis was undertaken of the medical records of 47 consecutive patients undergoing surgery for symptomatic Chiari I malformations at Rainbow Babies and Children's Hospital. Thirteen (28%) of the 47 patients presented with complaints consistent with cerebellar fits. Before the correct diagnosis was made, nine (69%) of the 13 children had previously undergone evaluation with electroencephalography and/or electrocardicography and Holter monitoring because of suspected cortical epilepsy or cardiogenic syncope. In each of the 13 children magnetic resonance imaging demonstrated pegged cerebellar tonsils herniated below the foramen magnum. A deep indentation or blanched discoloration of the cerebellar tonsils was noted in five (38%) of these 13 patients at the time of surgery. Of patients with symptomatic Chiari I malformations, the mean degree of tonsillar herniation was significantly less for those in whom cerebellar fits occurred than those in whom they were absent (8.8 mm and 13.9 mm, respectively; p = 0.007). In only one of the patients with cerebellar fits was a syrinx present, and this was a small focal lower thoracic collection. Spells resolved after surgery in all patients who presented with cerebellar fits. Conclusions Cerebellar fits may mimic other disorders such as cardiogenic syncope and epileptic seizures. The correct diagnosis may be delayed or the conditions may be misdiagnosed by those who fail to consider Chiari I malformation as a cause of drop attacks, abnormal extensor posturing, and apneic spells in children. The response to decompressive surgery in these patients is gratifying.


1993 ◽  
Vol 107 (5) ◽  
pp. 441-443 ◽  
Author(s):  
F. W. J. Albers ◽  
K. J. A. O. Ingels

The type I Chiari malformation consists of a caudal displacement of the cerebellar tonsils through the foramen magnum into the cervical spinal canal. The most common presenting symptoms, such as pain, weakness and headache, are frequently preceded by otoneurological symptoms. Sensorineural hearing loss, vertigo, nystagmus, dysequilibrium, tinnitus and other cranial nerve involvement have been reported in Chiari-I malformation. A case report is presented and the clinical features of the disease are discussed with emphasis on the otoneurological aspects.


Author(s):  
Isabel A. Snee ◽  
Catherine A. Mazzola ◽  
Tatiana Sikorskyj

AbstractWe present a rare case of an 8-year-old male with Klippel-Trenaunay syndrome (KTS) and a Chiari I malformation (CIM). Magnetic resonance imaging (MRI) to investigate facial asymmetry and speech delay at age two revealed CIM with cerebellar tonsils 1.3 cm below the foramen magnum without syringomyelia. The patient underwent a craniectomy and posterior fossa decompression with C1 laminectomy. While gene sequencing determined the patient was negative for the PIK3CA gene mutation, the patient’s clinical history strongly suggests KTS. He has hemihypertrophy, leg length discrepancy, hemangiomas and pigmentary mosaicism along the upper and lower extremities, heart murmur, chronic low heart rate, recurrent hip pain, and mild scoliosis. Neurodevelopmental concerns include difficulty reading, attention deficit hyperactivity disorder (ADHD), anxiety, and difficulty running and going downstairs. His most recent MRI shows good decompression at the cervicomedullary junction, global cerebrospinal fluid (CSF) flow, and less peg-like cerebellar tonsils. Also noted were two intravertebral hemangiomas at T5 and T6. While the patient’s speech has improved, there is still difficulty with the expressive language. He still has mild delays, runs slowly, and does not alternate feet when climbing stairs. The patient is being followed by multiple specialists including neurology, hematology-oncology, genetics, orthopedic surgery, and developmental pediatrics.


2019 ◽  
pp. 37-48
Author(s):  
Ait Bachir Mustapha ◽  
T. Benbouzid

Introduction. Cranio-vertebral decompression remains the common denominator for the treatment of syringomyelia associated with Chiari I. On the other hand, the details of the procedure, remains controversial. The success of the surgery is to restore the circulation of cerebro-spinal fluid at the level of the foramen magnum. How is this circulation restored to the level of foramen is the question? We offer our attitude towards the treatment of syringomyelia with Chiari I. Material and method. Consecutive series of 32/121 patients benefiting from cranio-vertebral decompression associated with intrapial aspiration of cerebellar tonsils treated for syringomyelia with a Chiari I malformation in adults. Result. Motor deficits were present in 20 / 22 patients, representing 90% of the entire patient group. these motor deficits are improved in 16 out of 22 cases, and remained unchanged in 06cas. no motor aggravation occurred. in our study, bone decompression and intra pial aspiration of cerebellar tonsils (sub arachnoids manipulation) were found to be associated with favourable results on clinical signs and symptoms. However, sub arachnoids manipulation and intra pial aspiration of cerebellar tonsils showed a little more complication compared with bone decompression with dural plasty. Conclusion. The bone decompression with dural graft and intradural dissection of adhesions and reduction by intra pial aspiration or resection of the tonsils is indicated on the MRI aspect of cerebellar tonsils of considerable size totally obstructing the foramen Magnum, the intraoperative finding, through the arachnoid, of the absence of passage of the cerebro-spinal fluid because of the bulging of the cerebellar tonsils.


1998 ◽  
Vol 88 (2) ◽  
pp. 237-242 ◽  
Author(s):  
John L. D. Atkinson ◽  
Brian G. Weinshenker ◽  
Gary M. Miller ◽  
David G. Piepgras ◽  
Bahram Mokri

Object. Spontaneous spinal cerebrospinal fluid (CSF) leakage with development of the intracranial hypotension syndrome and acquired Chiari I malformation due to lumbar spinal CSF diversion procedures have both been well described. However, concomitant presentation of both syndromes has rarely been reported. The object of this paper is to present data in seven cases in which both syndromes were present. Three illustrative cases are reported in detail. Methods. The authors describe seven symptomatic cases of spontaneous spinal CSF leakage with chronic intracranial hypotension syndrome in which magnetic resonance (MR) images depicted dural enhancement, brain sagging, loss of CSF cisterns, and acquired Chiari I malformation. Conclusions. This subtype of intracranial hypotension syndrome probably results from chronic spinal drainage of CSF or high-flow CSF shunting and subsequent loss of brain buoyancy that results in brain settling and herniation of hindbrain structures through the foramen magnum. Of 35 cases of spontaneous spinal CSF leakage identified in the authors' practice over the last decade, MR imaging evidence of acquired Chiari I malformation has been shown in seven. Not to be confused with idiopathic Chiari I malformation, ideal therapy requires recognition of the syndrome and treatment directed to the site of the spinal CSF leak.


Sign in / Sign up

Export Citation Format

Share Document