scholarly journals Spo13 prevents premature cohesin cleavage during meiosis

2019 ◽  
Vol 4 ◽  
pp. 29 ◽  
Author(s):  
Stefan Galander ◽  
Rachael E. Barton ◽  
David A. Kelly ◽  
Adèle L. Marston

Background: Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesin protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Methods: Here we investigate the effects of loss of SPO13 on cohesion during meiosis I using a live-cell imaging approach. Results: Unlike wild type, cells lacking SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in spo13Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in spo13Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Conclusions: Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in spo13Δ cells.

2019 ◽  
Vol 4 ◽  
pp. 29 ◽  
Author(s):  
Stefan Galander ◽  
Rachael E. Barton ◽  
David A. Kelly ◽  
Adèle L. Marston

Background: Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesion protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Methods: Here we investigate the effects of loss of SPO13 on cohesion during meiosis I using a live-cell imaging approach. Results: Unlike wild type, cells lacking SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in spo13Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in spo13Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Conclusions: Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in spo13Δ cells.


2018 ◽  
Author(s):  
Stefan Galander ◽  
Rachael E Barton ◽  
David A Kelly ◽  
Adele L Marston

Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesion protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Here we investigate the effects of loss of SPO13 on cohesion during meiosis I. Unlike wild type, cells lacking SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in spo13Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in spo13Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in spo13Δ cells.


2008 ◽  
Vol 19 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Brendan M. Kiburz ◽  
Angelika Amon ◽  
Adele L. Marston

Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.


2011 ◽  
Vol 193 (7) ◽  
pp. 1213-1228 ◽  
Author(s):  
Farid Bizzari ◽  
Adele L. Marston

During meiosis, two consecutive nuclear divisions follow a single round of deoxyribonucleic acid replication. In meiosis I, homologues are segregated, whereas in meiosis II, sister chromatids are segregated. This requires that the sequential assembly and dissolution of specialized chromosomal factors are coordinated with two rounds of spindle assembly and disassembly. How these events are coupled is unknown. In this paper, we show, in budding yeast, that the protein phosphatase 2A regulatory subunit Cdc55 couples the loss of linkages between chromosomes with nuclear division by restraining two other phosphatases, Cdc14 and PP2ARts1. Cdc55 maintains Cdc14 sequestration in the nucleolus during early meiosis, and this is essential for the assembly of the meiosis I spindle but not for chromosomes to separate. Cdc55 also limits the formation of PP2A holocomplexes containing the alternative regulatory subunit Rts1, which is crucial for the timely dissolution of sister chromatid cohesion. Therefore, Cdc55 orders passage through the meiotic divisions by ensuring a balance of phosphatases.


2021 ◽  
Author(s):  
Masashi Nambu ◽  
Atsuki Kishikawa ◽  
Takatomi Yamada ◽  
Kento Ichikawa ◽  
Yunosuke Kira ◽  
...  

Kinetochores drive chromosome segregation by mediating chromosome interactions with the spindle. In higher eukaryotes, sister kinetochores are separately positioned on opposite sides of sister centromeres during mitosis, but associate with each other during meiosis I. Kinetochore association facilitates the attachment of sister chromatids to the same pole, enabling the segregation of homologous chromosomes toward opposite poles. In the fission yeast, Schizosaccharomyces pombe, Rec8-containing meiotic cohesin is suggested to establish kinetochore associations by mediating cohesion of the centromere cores. However, cohesin-mediated kinetochore associations on intact chromosomes have never been demonstrated directly. Here, we describe a novel method for the direct evaluation of kinetochore associations on intact chromosomes in live S. pombe cells, and demonstrate that sister kinetochores and the centromere cores are positioned separately on mitotic chromosomes but associate with each other on meiosis I chromosomes. Furthermore, we demonstrate that kinetochore association depends on meiotic cohesin and the cohesin regulators, Moa1 and Mrc1, and requires mating-pheromone signaling for its establishment. These results confirm cohesin-mediated kinetochore association and its regulatory mechanisms, along with the usefulness of the developed method for its analysis.


2020 ◽  
Author(s):  
Fan Zheng ◽  
Fenfen Dong ◽  
Shuo Yu ◽  
Tianpeng Li ◽  
Yanze Jian ◽  
...  

ABSTRACTThe spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I, but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule crosslinker Ase1 as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.


Open Biology ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Misuzu Wakiya ◽  
Eriko Nishi ◽  
Shinnosuke Kawai ◽  
Kohei Yamada ◽  
Kazuhiro Katsumata ◽  
...  

Establishment of proper chromosome attachments to the spindle requires elimination of erroneous attachments, but the mechanism of this process is not fully understood. During meiosis I, sister chromatids attach to the same spindle pole (mono-oriented attachment), whereas homologous chromosomes attach to opposite poles (bi-oriented attachment), resulting in homologous chromosome segregation. Here, we show that chiasmata that link homologous chromosomes and kinetochore component Dam1 are crucial for elimination of erroneous attachments and oscillation of centromeres between the spindle poles at meiosis I in fission yeast. In chiasma-forming cells, Mad2 and Aurora B kinase, which provides time for attachment correction and destabilizes erroneous attachments, respectively, caused elimination of bi-oriented attachments of sister chromatids, whereas in chiasma-lacking cells, they caused elimination of mono-oriented attachments. In chiasma-forming cells, in addition, homologous centromere oscillation was coordinated. Furthermore, Dam1 contributed to attachment elimination in both chiasma-forming and chiasma-lacking cells, and drove centromere oscillation. These results demonstrate that chiasmata alter attachment correction patterns by enabling error correction factors to eliminate bi-oriented attachment of sister chromatids, and suggest that Dam1 induces elimination of erroneous attachments. The coincidental contribution of chiasmata and Dam1 to centromere oscillation also suggests a potential link between centromere oscillation and attachment elimination.


2019 ◽  
Author(s):  
Lin-Ing Wang ◽  
Arunika Das ◽  
Kim S. McKim

AbstractSister centromere fusion is a process unique to meiosis that promotes co-orientation of the sister kinetochores, ensuring they attach to microtubules from the same pole. We have found that the kinetochore protein SPC105R/KNL1 and Protein Phosphatase 1 (PP1-87B) are required for this process. The analysis of these two proteins, however, has shown that two independent mechanisms maintain sister centromere fusion during meiosis I in Drosophila oocytes. Double depletion experiments demonstrated that the precocious separation of centromeres in Spc105R RNAi oocytes is Separase-dependent, suggesting cohesin proteins must be maintained at the core centromeres. In contrast, precocious sister centromere separation in Pp1-87B RNAi oocytes does not depend on Separase or Wapl. Further analysis with microtubule destabilizing drugs showed that PP1-87B maintains sister centromeres fusion by regulating microtubule dynamics. Additional double depletion experiments demonstrated that PP1-87B has this function by antagonizing Polo kinase and BubR1, two proteins known to promote kinetochore-microtubule (KT-MT) attachments. These results suggest that PP1-87B maintains sister centromere fusion by inhibiting stable KT-MT attachments. Surprisingly, we found that loss of C(3)G, the transverse element of the synaptonemal complex (SC), suppresses centromere separation in Pp1-87B RNAi oocytes. This is evidence for a functional role of centromeric SC in the meiotic divisions. We propose two mechanisms maintain co-orientation in Drosophila oocytes: one involves SPC105R to protect cohesins at sister centromeres and another involves PP1-87B to regulate spindle forces at end-on attachments.Author SummaryMeiosis involves two cell divisions. In the first division, pairs of homologous chromosomes segregate, in the second division, the sister chromatids segregate. These patterns of division are mediated by regulating microtubule attachments to the kinetochores and stepwise release of cohesion between the sister chromatids. During meiosis I, cohesion fusing sister centromeres must be intact so they attach to microtubules from the same pole. At the same time, arm cohesion must be released for anaphase I. Upon entry into meiosis II, the sister centromeres must separate to allow attachment to opposite poles, while cohesion surrounding the centromeres must remain intact until anaphase II. How these different populations of cohesion are regulated is not understood. We identified two genes required for maintaining sister centromere cohesion, and surprisingly found they define two distinct mechanisms. The first is a kinetochore protein that maintains sister centromere fusion by recruiting proteins that protect cohesion. The second is a phosphatase that antagonizes proteins that stabilize microtubule attachments. We propose that entry into meiosis II coincides with stabilization of microtubule attachments, resulting in the separation of sister centromeres without disrupting cohesion in other regions, facilitating attachment of sister chromatids to opposite poles.


2001 ◽  
Vol 114 (15) ◽  
pp. 2843-2853 ◽  
Author(s):  
Monika Molnar ◽  
Jürg Bähler ◽  
Jürg Kohli ◽  
Yasushi Hiraoka

Regular segregation of homologous chromosomes during meiotic divisions is essential for the generation of viable progeny. In recombination-proficient organisms, chromosome disjunction at meiosis I generally occurs by chiasma formation between the homologs (chiasmate meiosis). We have studied meiotic stages in living rec8 and rec7 mutant cells of fission yeast, with special attention to prophase and the first meiotic division. Both rec8 and rec7 are early recombination mutants, and in rec7 mutants, chromosome segregation at meiosis I occurs without any recombination (achiasmate meiosis). Both mutants showed distinct irregularities in nuclear prophase movements. Additionally, rec7 showed an extended first division of variable length and with single chromosomes changing back and forth between the cell poles. Two other early recombination deficient mutants (rec14 and rec15) showed very similar phenotypes to rec7 during the first meiotic division, and the fidelity of achiasmate chromosome segregation slightly exceeded the expected random level. We discuss possible regulatory mechanisms of fission yeast to deal with achiasmate chromosome segregation.


1936 ◽  
Vol 121 (823) ◽  
pp. 290-300 ◽  

Triploid organisms have three homologous chromosomes of each kind instead of the two of diploids. The regular mechanism of heredity fails in these circumstances. The triploid is incapable of breeding true by sexual reproduction. But the way in which it carries out the process of chromosome pairing and segregation is of great significance. The processes take place in normal series, but the relationships they establish are abnormal. A triploid thus provides a natural experiment, with the diploid of its own species as a control for one variable, and with triploids of different species as controls for others. In Tulipa and Hyacinthus I have made use of this experiment for inducing the principles of the external mechanics of chromosomes during the prophase of meiosis. I have inferred from them the relationships between the forces working in mitosis and meiosis. The triploid forms of various Fritillaria species make it possible to test the principles of metaphase mechanics induced from observations on structural hybrids and other polyploids (Darlington, 1932, b , and 1933, c ) as well as from the exceptional behaviour in the diploid species of Fritillaria already discussed.


Sign in / Sign up

Export Citation Format

Share Document