scholarly journals Effects of elemental sulfur and soil compaction on microbial biomass carbon and soil enzyme activities

2015 ◽  
Vol 6 (3) ◽  
pp. 7-14
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8531 ◽  
Author(s):  
Yulu Zhang ◽  
Dong Cui ◽  
Haijun Yang ◽  
Nijat Kasim

Background A wetland is a special ecosystem formed by the interaction of land and water. The moisture content variation will greatly affect the function and structure of the wetland internal system. Method In this paper, three kinds of wetlands with different flooding levels (Phragmites australis wetland (long-term flooding), Calamagrostis epigeios wetland(seasonal flooding) and Ditch millet wetland (rarely flooded)) in Ili Valley of Xinjiang China were selected as research areas. The changes of microbial biomass carbon, soil physical and chemical properties in wetlands were compared, and redundancy analysis was used to analyze the correlation between soil physical and chemical properties, microbial biomass carbon and enzyme activities (soil sucrase, catalase, amylase and urease). The differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley were studied and discussed. Result The results of this study were the following: (1) The activities of sucrase and amylase in rarely flooded wetlands and seasonally flooded wetlands were significantly higher than those in long-term flooded wetlands; the difference of catalase activity in seasonal flooded wetland was significant and the highest. (2) Redundancy analysis showed that soil organic carbon, dissolved organic carbon, total phosphorus and soil microbial biomass carbon had significant effects on soil enzyme activity (p < 0.05). (3) The correlation between soil organic carbon and the sucrase activity, total phosphorus and the catalase activity was the strongest; while soil organic carbon has a significant positive correlation with invertase, urease and amylase activity, with a slight influence on catalase activity. The results of this study showed that the content of organic carbon, total phosphorus and other soil fertility factors in the soil would be increased and the enzyme activity would be enhanced if the flooding degree was changed properly.


2018 ◽  
Vol 18 (5) ◽  
pp. 1971-1980 ◽  
Author(s):  
Li Xiao ◽  
Yimei Huang ◽  
Quanchao Zeng ◽  
Junfeng Zhao ◽  
Junying Zhou

1988 ◽  
Vol 68 (3) ◽  
pp. 463-473 ◽  
Author(s):  
V. V. S. R. GUPTA ◽  
J. R. LAWRENCE ◽  
J. J. GERMIDA

This study investigated the impact of repeated application of S° fertilizer on microbial and biochemical characteristics of two Grey Luvisolic soils. The Waitville pasture plots received Agri-Sul at a rate of 22 or 44 kg S° ha−1 yr−1 for 5 yr, whereas the Loon River canola-summerfallow plots received single or double applications of Flow-able Sulfur (50 kg S° ha−1) or Agri-Sul (100 kg S° ha−1). Application of S° fertilizer significantly decreased the pH in both soils. Organic C declined in S°-treated plots of the Waitville soil, and there was a narrowing of C:N:S ratios in both soils. Application of S° fertilizer significantly increased the total S, HI-S and sulfate sulfur levels of both soils. There was a 29–45% and 2–51% decline in microbial biomass carbon content due to S° fertilizer application in Waitville and Loon River soils, respectively. Repeated application of S° also resulted in a decline in respiration, dehydrogenase, urease, alkaline phosphatase and arylsulfatase activities, along with populations of protozoa, algae and nitrifiers in both soils. Significant correlations observed among related characteristics further emphasized the treatment effects. These results indicate that the impact of repeated application of S° fertilizer on microbial biomass and activity should be considered when recommending S° as a fertilizer for sulfur-deficient soils. Key words: Sulfur (elemental), microbial biomass, dehydrogenase, urea, phosphomonoesterases, arylsulfatase


Sign in / Sign up

Export Citation Format

Share Document