scholarly journals The Bulk Glass Forming Ability and Magnetic Properties of Pr9Fe50 + xCo13Zr1Nb4B23 - x(x = 0, 2, 5, 8) Alloys

2010 ◽  
Vol 118 (5) ◽  
pp. 900-902 ◽  
Author(s):  
K. Pawlik ◽  
P. Pawlik ◽  
J.J. Wysłocki
2000 ◽  
Vol 644 ◽  
Author(s):  
Y. Li

AbstractOnset temperature, Tm and offset temperature (liquidus) Tl of melting of a series of bulk glass forming alloys based on La, Mg, and Pd have been measured by studying systematically the melting behaviour of these alloys using DTA or DSC. Bulk metallic glass formation has been found to be most effective at or near their eutectic points and less effective for off-eutectic alloys. Reduced glass transition temperature Trg given by Tg/Tl is found to show a stronger correlation with critical cooling rate or critical section thickness for glass formation than Trg given by Tg/Tm.


2001 ◽  
Vol 42 (10) ◽  
pp. 2136-2139 ◽  
Author(s):  
Baolong Shen ◽  
Hisato Koshiba ◽  
Akihisa Inoue ◽  
Hisamichi Kimura ◽  
Takao Mizushima

2010 ◽  
Vol 18 (10) ◽  
pp. 1876-1879 ◽  
Author(s):  
Qikui Man ◽  
Huaijun Sun ◽  
Yaqiang Dong ◽  
Baolong Shen ◽  
Hisamichi Kimura ◽  
...  

2006 ◽  
Vol 21 (4) ◽  
pp. 1019-1024 ◽  
Author(s):  
J.M. Park ◽  
J.S. Park ◽  
D.H. Kim ◽  
J-H. Kim ◽  
E. Fleury

Fe element was partially substituted by Zr and Co in an attempt to enhance the glass-forming ability, and mechanical and soft magnetic properties of Fe74-xNb6B17Y3(Zr, Co)x (x = 3, 5, 8) amorphous alloys. Both partial replacements resulted in the enhancement of the glass-forming ability, and 3-mm diameter rods with a fully amorphous structure were prepared by a copper mold casting method. Zr and Co containing Fe-based bulk amorphous alloys exhibited high compressive fracture strength of about 4 and 3.5 GPa, respectively. However, Zr and Co induced different effects on the magnetic properties. Whereas the partial replacement of Fe by Zr was found to decrease dramatically the saturation magnetization, the partial replacement of Fe by Co provided an increase of about 25% of the saturation magnetization.


Sign in / Sign up

Export Citation Format

Share Document