scholarly journals Research on Yb:YAG Laser Beam Power Distribution Used in Hybrid Processes

2021 ◽  
Vol 139 (5) ◽  
pp. 598-601
Author(s):  
M. Kubiak ◽  
T. Domański ◽  
W. Piekarska ◽  
Z. Saternus
2018 ◽  
Vol 157 ◽  
pp. 02020
Author(s):  
Marcin Kubiak

This paper concerns mathematical modelling of caustics of solid state laser YAG type with the disk active medium. The heat source model is developed on the basis of interpolation algorithms using geostatistical kriging method. The real laser beam power distribution and caustics are taken into account in the model. Measurements of laser beam power distribution and diameter of the laser beam spot for different focusing are performed using UFF100 analyzer. Yb:YAG laser emitted by Trumpf laser head D70 is used in the experiment. Presented results include the comparison of experimentally determined laser power intensity distribution and caustic with results obtained by developed interpolation model.


2016 ◽  
Vol 36 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Dominika Panfil ◽  
Piotr Wach ◽  
Michał Kulka ◽  
Jerzy Michalski

Abstract In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones


1982 ◽  
Vol 21 (13) ◽  
pp. 2432 ◽  
Author(s):  
U. Halavee ◽  
M. Tamir ◽  
E. Azoulay

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5367
Author(s):  
Dariusz Bartkowski

The paper presents study results of Fe/TaC metal matrix composite coatings produced on tool steel using laser processing of TaC pre-coat. The Fe/TaC coatings were produced in two steps. First, a pre-coat in the form of a paste based on tantalum carbide and water glass was made and then applied to the steel substrate. In the second step, the TaC pre-coat was remelted with steel substrate using a diode laser beam with a rated power of 3 kW. A constant scanning speed of the laser beam of 3 m/min and three types of laser beam power: 500 W, 800 W and 1100 W were applied. Tests were carried out on three different thicknesses of the TaC pre-coat: 30 µm, 60 µm and 90 µm. The influence of pre-coat thickness and laser beam power on the microstructure, chemical composition and microhardness were analyzed. A possibility of producing coatings with a characteristic composite structure was found, where the iron from the substrate became the matrix, and the introduced tantalum carbides—the reinforcing phase. It was found that too high power of the laser beam leads to complete melting of the introduced primary TaC particles. It was also found that the use of a thicker TaC pre-coat contributes to microhardness increase.


Sign in / Sign up

Export Citation Format

Share Document