scholarly journals High Resolution X-Ray Diffraction Investigations of Si/SiGe Quantum Well Structures and Si/Ge Short-Period Superlattices

1993 ◽  
Vol 84 (3) ◽  
pp. 475-489
Author(s):  
G. Bauer ◽  
E. Koppensteiner ◽  
P. Hamberger ◽  
J. Nützel ◽  
G. Abstreiter ◽  
...  
1995 ◽  
Vol 399 ◽  
Author(s):  
M. Shima ◽  
L. Salamanca-Riba ◽  
G. Springholz ◽  
G. Bauer

ABSTRACTMolecular beam epitaxy was used to grow EuTe(x)/PbTe(y) short period superlattices with x=1-4 EuTe(111) monolayers alternating with y≈3x PbTe monolayers. The superlattices were characterized by transmission electron microscopy and high resolution x-ray diffraction. Regions with double periodicity were observed coexisting with areas of nominal periodicity. The sample with x=3.5 and y=9, for example, contains regions with double periodicity of x=7 and y=17. X-ray diffraction measurements confirm the formation of the double periodicity in these samples by the appearance of weak satellites in between the satellites of the nominal periodicity. The double periodicity in the superlattice is believed to result from interdiffusion during the growth. A model for this process is presented.


1995 ◽  
Vol 39 ◽  
pp. 439-448
Author(s):  
A Sanz-Hervas ◽  
A Sacedón ◽  
E.J Abril ◽  
J.L Sanchez-Rojas ◽  
C. Villar ◽  
...  

In this work we apply high-resolution X-ray diffractometry to the study of InGaAs/GaAs multiple quantum well structures on (001) and(lll)B GaAs substrates. The samples consisted of p-i-n diodes with a multiple quantum well embedded in the i-region and were simultaneously grown on (001) and (111)B substrates by molecular beam epitaxy. For the characterization we have used symmetric and asymmetric reflections at different azimuthal positions. The interpretation of the diffraction profiles has been possible thanks to our recently developed simulation model, which allows the calculation of any reflection regardless of the substrate orientation. X-ray results about composition and thickness are very similar in the samples simultaneously grown on both orientations as expected from our specific growth conditions. The information obtained from X-ray characterization is consistent with the results of photoluminescence and photocurrent measurements within the experimental uncertainty of the techniques. In (lll)B samples, X-ray diffractometry provides structural information which cannot be easily obtained from optical characterization techniques.


1996 ◽  
Vol 221 (1-4) ◽  
pp. 487-493 ◽  
Author(s):  
E. Zolotoyabko ◽  
Y. Finkelstein ◽  
M. Blumina ◽  
D. Fekete

1993 ◽  
Vol 325 ◽  
Author(s):  
X. C. Liu ◽  
S. Q. Gu ◽  
E. E. Reuter ◽  
S. G. Bishop ◽  
A. C. Chen ◽  
...  

AbstractSpontaneously laterally ordered (GaP)2/(InP)2 short period superlattices (SPS) grown by Molecular Beam Epitaxy (MBE) on nominal (100) GaAs substrates have been studied by photoluminescence (PL) spectroscopy. The samples studied included SPS comprising 110 pairs of (GaP)2/(InP)2 (total thickness σ90 nm) and multiquantum well structures in which quantum wells comprising 12 pairs of (GaP)2/(InP)2 SPS layers (thickness σ10 nm) are alternated with lattice-matched GaInP random alloy barrier layers. The 5K PL spectra include a σ1760 meV nearband edge band, and a much broader, lower energy (σ1670 meV) luminescence band that exhibits an unusual fatiguing behavior; its intensity diminishes monotonically during continuous illumination by the exciting light. This fatigued PL state is metastable at low temperatures. In the quantum well structure, although the relative intensity of the lower energy band is significantly weaker in comparison to the higher one, the fatiguing behavior still exists. However the fatiguing rate is slower in quantum well structures than that observed in the thick SPS film.


1993 ◽  
Vol 126 (1) ◽  
pp. 144-150 ◽  
Author(s):  
C. Ferrari ◽  
M.R. Bruni ◽  
F. Martelli ◽  
M.G. Simeone

1998 ◽  
Vol 41 (6) ◽  
pp. 623-628 ◽  
Author(s):  
Y Zheng ◽  
J. C Boulliard ◽  
B Capelle ◽  
A Lifchitz ◽  
S.

Sign in / Sign up

Export Citation Format

Share Document