scholarly journals Influence of Montoring: Fog and Edge Computing

2019 ◽  
Vol 20 (2) ◽  
pp. 365-376 ◽  
Author(s):  
Vivek Kumar Prasad ◽  
Madhuri D Bhavsar ◽  
Sudeep Tanwar

The evolution of the Internet of Things (IoT) has augmented the necessity for Cloud, edge and fog platforms. The chief benefit of cloud-based schemes is they allow data to be collected from numerous services and sites, which is reachable from any place of the world. The organizations will be benefited by merging the cloud platform with the on-site fog networks and edge devices and as result, this will increase the utilization of the IoT devices and end users too. The network traffic will reduce as data will be distributed and this will also improve the operational efficiency. The impact of monitoring in edge and fog computing can play an important role to efficiently utilize the resources available at these layers. This paper discusses various techniques involved for monitoring for edge and fog computing and its advantages. The paper ends with a case study to demonstarte the need of monitoring in fog and edge in the healthcare system.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Rahul Verma

The internet of things (IoT) is the new buzzword in technological corridors with most technology companies announcing a smart device of sorts that runs on internet of things (IoT). Cities around the world are getting “smarter” every day through the implementation of internet of things (IoT) devices. Cities around the world are implementing individual concepts on their way to becoming smart. The services are automated and integrated end to end using internet of things (IoT) devices. The chapter presents an array of internet of things (IoT) applications. Also, cyber physical systems are becoming more vulnerable since the internet of things (IoT) attacks are common and threatening the security and privacy of such systems. The main aim of this chapter is to bring more research in the application aspects of smart internet of things (IoT).


2021 ◽  
Vol 2 (4) ◽  
pp. 1-23
Author(s):  
Morshed Chowdhury ◽  
Biplob Ray ◽  
Sujan Chowdhury ◽  
Sutharshan Rajasegarar

Due to the widespread functional benefits, such as supporting internet connectivity, having high visibility and enabling easy connectivity between sensors, the Internet of Things (IoT) has become popular and used in many applications, such as for smart city, smart health, smart home, and smart vehicle realizations. These IoT-based systems contribute to both daily life and business, including sensitive and emergency situations. In general, the devices or sensors used in the IoT have very limited computational power, storage capacity, and communication capabilities, but they help to collect a large amount of data as well as maintain communication with the other devices in the network. Since most of the IoT devices have no physical security, and often are open to everyone via radio communication and via the internet, they are highly vulnerable to existing and emerging novel security attacks. Further, the IoT devices are usually integrated with the corporate networks; in this case, the impact of attacks will be much more significant than operating in isolation. Due to the constraints of the IoT devices, and the nature of their operation, existing security mechanisms are less effective for countering the attacks that are specific to the IoT-based systems. This article presents a new insider attack, named loophole attack , that exploits the vulnerabilities present in a widely used IPv6 routing protocol in IoT-based systems, called RPL (Routing over Low Power and Lossy Networks). To protect the IoT system from this insider attack, a machine learning based security mechanism is presented. The proposed attack has been implemented using a Contiki IoT operating system that runs on the Cooja simulator, and the impacts of the attack are analyzed. Evaluation on the collected network traffic data demonstrates that the machine learning based approaches, along with the proposed features, help to accurately detect the insider attack from the network traffic data.


2021 ◽  
Vol 15 (02) ◽  
pp. 19-24
Author(s):  
Vishv Patel ◽  
Devansh Shah ◽  
Nishant Doshi

The large deployment of the Internet of Things (IoT) is empowering Smart City tasks and activities everywhere throughout the world. Items utilized in day-by-day life are outfitted with IoT devices and sensors to make them interconnected and connected with the internet. Internet of Things (IoT) is a vital piece of a smart city that tremendously impact on all the city sectors, for example, governance, healthcare, mobility, pollution, and transportation. This all connected IoT devices will make the cities smart. As different smart city activities and undertakings have been propelled in recent times, we have seen the benefits as well as the risks. This paper depicts the primary challenges and weaknesses of applying IoT innovations dependent on smart city standards. Moreover, this paper points the outline of the technologies and applications of the smart cities.


2019 ◽  
Vol 18 (S1) ◽  
pp. S9-S22 ◽  
Author(s):  
ANUPAM CHANDER

AbstractInternational trade law, organized around the goods-services dichotomy, is about to meet the Internet of Things (IoT). How will rules written for the world of 1994 fare in a world of talking teapots and connected cars? IoT will especially raise governmental concerns with respect to privacy, security, and standards. Indeed, governments have already begun taking adverse measures against foreign IoT suppliers based not on the hardware, but on the digital features of the products. This paper argues that IoT devices comprise both goods and services, therefore calling into application multiple WTO disciplines, with the specific agreements that are applicable dependent on the particular governmental measure subject to challenge.


Sign in / Sign up

Export Citation Format

Share Document