scholarly journals Allelic variation of low molecular weight glutenin subunits composition and the revealed genetic diversity in durum wheat (Triticum turgidum L. ssp. durum (Desf))

2018 ◽  
Vol 68 (5) ◽  
pp. 524-535
Author(s):  
Xin Hu ◽  
Yanchun Peng ◽  
Xifeng Ren ◽  
Junhua Peng ◽  
Eviatar Nevo ◽  
...  
2012 ◽  
Vol 48 (No. 1) ◽  
pp. 23-32 ◽  
Author(s):  
I. Bellil ◽  
M. Chekara Bouziani ◽  
D. Khelifi

Saharan wheats have been studied particularly from a botanical viewpoint. Genotypic identification, classification and genetic diversity studies to date were essentially based on the morphology of the spike and grain. For this, the allelic variation at the glutenin loci was studied in a set of Saharan bread and durum wheats from Algerian oases where this crop has been traditionally cultivated. The high molecular weight and low molecular weight glutenin subunit composition of 40 Saharan bread and 30 durum wheats was determined by SDS-PAGE. In Saharan bread wheats 32 alleles at the six glutenin loci were detected, which in combination resulted in 36 different patterns including 17 for HMW and 23 for LMW glutenin subunits. For the Saharan durum wheats, 29 different alleles were identified for the five glutenin loci studied. Altogether, 29 glutenin patterns were detected, including 13 for HMW-GS and 20 for LMW-GS. Three new alleles were found in Saharan wheats, two in durum wheat at the Glu-B1 and Glu-B3 loci, and one in bread wheat at the Glu-B1 locus. The mean indices of genetic variation at the six loci in bread wheat and at the five loci in durum wheat were 0.59 and 0.63, respectively, showing that Saharan wheats were more diverse. This information could be useful to select Saharan varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2845
Author(s):  
Pablo F. Roncallo ◽  
Carlos Guzmán ◽  
Adelina O. Larsen ◽  
Ana L. Achilli ◽  
Susanne Dreisigacker ◽  
...  

Durum wheat grains (Triticum turgidum L. ssp. durum) are the main source for the production of pasta, bread and a variety of products consumed worldwide. The quality of pasta is mainly defined by the rheological properties of gluten, an elastic network in wheat endosperms formed of gliadins and glutenins. In this study, the allelic variation at five glutenin loci was analysed in 196 durum wheat genotypes. Two loci (Glu-A1 and Glu-B1), encoding for high-molecular-weight glutenin subunits (HMW-GS), and three loci (Glu-B2, Glu-A3 and Glu-B3), encoding for low molecular weight glutenin subunits (LMW-GS), were assessed by SDS-PAGE. The SDS-sedimentation test was used and the grain protein content was evaluated. A total of 32 glutenin subunits and 41 glutenin haplotypes were identified. Four novel alleles were detected. Fifteen haplotypes represented 85.7% of glutenin loci variability. Some haplotypes carrying the 7 + 15 and 7 + 22 banding patterns at Glu-B1 showed a high gluten strength similar to those that carried the 7 + 8 or 6 + 8 alleles. A decreasing trend in grain protein content was observed over the last 85 years. Allelic frequencies at the three main loci (Glu-B1, Glu-A3 and Glu-B3) changed over the 1915–2020 period. Gluten strength increased from 1970 to 2020 coinciding with the allelic changes observed. These results offer valuable information for glutenin haplotype-based selection for use in breeding programs.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 957 ◽  
Author(s):  
Youssef Chegdali ◽  
Hassan Ouabbou ◽  
Abdelkhalid Essamadi ◽  
Fausto Cervantes ◽  
Maria Itria Ibba ◽  
...  

Landraces and old wheat cultivars display great genetic variation and constitute a valuable resource for the improvement of modern varieties, especially in terms of quality. Gluten quality is one of the major determinants of wheat quality, and it is greatly influenced by variation in the high molecular weight and low molecular weight glutenin subunits (HMW-GS and LMW-GS). Identification of novel allelic variants for either of the two groups of the gluten-forming proteins could greatly assist in the improvement of wheat gluten quality. In the present study, the allelic composition of the HMW- and LMW-GS of ninety-five durum wheat accessions was evaluated. These accessions included Moroccan cultivars and landraces and North American cultivars and were all conserved in the National Gene Bank from Morocco. In total, 20 cataloged alleles and 12 novel alleles were detected. For the HMW-GS, two alleles were found at the Glu-A1 locus, and seven different allelic variants were identified at the Glu-B1 locus. Among them, two alleles were new (alleles Glu-B1cp and co). Additionally, two of the analyzed accessions exhibited the Glu-D1d allele, suggesting the presence of the Glu-D1 locus introgression. For the LWM-GS, eight, ten and two alleles were identified at the Glu-A3, Glu-B3 and Glu-B2 loci, respectively. Among them, two new allelic variants were identified at the Glu-A3 locus, and seven new allelic variants were identified at the Glu-B3 locus. Overall, the Moroccan landraces exhibited a greater genetic diversity and a greater number of glutenin alleles compared to the Moroccan and North American durum wheat cultivars. The novel germplasm and glutenin alleles detected in this study could contribute to the improvement of durum wheat quality and the expansion of modern durum wheat genetic diversity.


1996 ◽  
Vol 36 (4) ◽  
pp. 451 ◽  
Author(s):  
CY Liu ◽  
AJ Rathjen

A large set of durum wheat lines (79 including 8 advanced Australian breeding lines) randomly collected from 11 countries and 11 bread wheat cultivars were grown in replicated trials at 2 field locations to compare yield and gluten quality. Gluten strength, as measured by the sodium dodecyl sulfate (SDS)-sedimentation (SDSS) test, varied considerably among the durum lines and was associated with the presence of specific glutenins. Unlike some previous reports, the present study showed that durum wheat cultivars having the high molecular weight (HMW) glutenin subunits coded by Glu-B1 genes such as 13 + 16 and 7 + 8 were highly correlated with improved dough strength, which was consistent with the effect of HMW glutenin subunits on dough quality in bread wheat. Cultivars having the low molecular weight (LMW) glutenin allele LMW-2 (or gliadin band r-45) generally gave stronger gluten than lines with allele LMW-1, as reported by earlier workers. The LMW pattern LMW-IIt gave the strongest glutenin. The combined better alleles at Glu-B1 (coded bands 13 + 16, 7 + 8 v. 6 + 8, 20) and Glu-3 (patterns LMW- II, LMW-IIt v. LMW-I) showed linear cumulative effects for dough strength. All the durum lines studied had lower SDSS values than the bread wheat controls (45.8 v. 76.2 mL), though durum wheats tended to possess higher grain protein concentrations (14.0 v. 11.9%) and gave lower grain yield than bread wheat. The Australian advanced lines had higher yield and better dough strength than durums from other countries except those from CIMMYT. The Australian lines also had 1-1.5% higher protein concentration and equal or better grain yield than the bread wheat, suggesting that these lines had potential for commercial use.


2003 ◽  
Vol 19 (3) ◽  
pp. 373-382 ◽  
Author(s):  
C.N. Raciti ◽  
M.A. Doust ◽  
G.M. Lombardo ◽  
G. Boggini ◽  
L. Pecetti

2010 ◽  
Vol 51 (1) ◽  
pp. 134-139 ◽  
Author(s):  
V. Muccilli ◽  
V. Cunsolo ◽  
R. Saletti ◽  
S. Foti ◽  
B. Margiotta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document