scholarly journals RETRACTED ARTICLE: High Fat Feeding of Lactating Mice Causing a Drastic Reduction in Fat and Energy Content in Milk without Affecting the Apparent Growth of Their Pups and the Production of Major Milk Fat Globule Membrane Components MFG-E8 and Butyrophilin

1999 ◽  
Vol 63 (10) ◽  
pp. 1749-1755 ◽  
Author(s):  
Naohito AOKI ◽  
Yumiko YAMAGUCHI ◽  
Sachiyo OHIRA ◽  
Tsukasa MATSUDA
Author(s):  
Ilse A. C. Arnoldussen ◽  
Martine C. Morrison ◽  
Maximilian Wiesmann ◽  
Janna A. van Diepen ◽  
Nicole Worms ◽  
...  

1992 ◽  
Vol 59 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Avis V. Houlihan ◽  
Philippa A. Goddard ◽  
Barry J. Kitchen ◽  
Colin J. Masters

SummaryThe effects of heat-induced interactions between milk fat globule membrane components and skim milk proteins in whole milk on the structure of the membrane were examined by isopycnic sucrose density gradient centrifugation and by using Triton X-100 as a membrane probe. Skim milk components were incorporated into all the lipoprotein fractions separated by density gradient centrifugation. High density complexes, higher in density than those found in the natural milk fat globule membrane, were formed during the heat treatment. Losses of natural membrane polypeptides from the medium and low density lipoproteins were observed on heating. Heating whole milk also altered the rate of release of membrane components by detergent, with decreases in protein released and an increase in phospholipid constituents released. Studies on washed cream indicated that some of the changes in the membrane on heating whole milk occurred due to the heat treatment alone, independent of the interactions with skim milk proteins.


2013 ◽  
Vol 31 (2) ◽  
pp. 70-82 ◽  
Author(s):  
Aleksandra Martinovic ◽  
Kim Marius Moe ◽  
Ehab Romeih ◽  
Bashir Aideh ◽  
Finn K. Vogensen ◽  
...  

2016 ◽  
Vol 5 ◽  
Author(s):  
Elieke Demmer ◽  
Marta D. Van Loan ◽  
Nancy Rivera ◽  
Tara S. Rogers ◽  
Erik R. Gertz ◽  
...  

AbstractMeals high in SFA, particularly palmitate, are associated with postprandial inflammation and insulin resistance. Milk fat globule membrane (MFGM) has anti-inflammatory properties that may attenuate the negative effects of SFA-rich meals. Our objective was to examine the postprandial metabolic and inflammatory response to a high-fat meal composed of palm oil (PO) compared with PO with an added dairy fraction rich in MFGM (PO+MFGM) in overweight and obese men and women (n 36) in a randomised, double-blinded, cross-over trial. Participants consumed two isoenergetic high-fat meals composed of a smoothie enriched with PO with v. without a cream-derived complex milk lipid fraction ( dairy fraction rich in MFGM) separated by a washout of 1–2 weeks. Serum cytokines, adhesion molecules, cortisol and markers of inflammation were measured at fasting, and at 1, 3 and 6 h postprandially. Glucose, insulin and lipid profiles were analysed in plasma. Consumption of the PO + MFGM v. PO meal resulted in lower total cholesterol (P = 0·021), LDL-cholesterol (P = 0·046), soluble intracellular adhesion molecule (P = 0·005) and insulin (P = 0·005) incremental AUC, and increased IL-10 (P = 0·013). Individuals with high baseline C-reactive protein (CRP) concentrations (≥3 mg/l, n 17) had higher (P = 0·030) insulin at 1 h after the PO meal than individuals with CRP concentrations <3 mg/l (n 19). The addition of MFGM attenuated this difference between CRP groups. The addition of a dairy fraction rich in MFGM attenuated the negative effects of a high-SFA meal by reducing postprandial cholesterol, inflammatory markers and insulin response in overweight and obese individuals, particularly in those with elevated CRP.


Sign in / Sign up

Export Citation Format

Share Document