Formation of the photosynthetic indicators of spring wheat depending on the variety and pre-sowing treatment

10.12737/1361 ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. 96-100
Author(s):  
Воробьева ◽  
Tatyana Vorobeva ◽  
Шашкаров ◽  
Leonid Shashkarov

This article describes the formation of leaf area, photosynthetic capacity of crops, the net photosynthetic efficiency, leaves productivity and efficiency, Coefficient of performance (COP) of photosynthetically active radiation (PAR) of spring wheat, using Nano- Gro seed treatment instead of the traditional etching, depending on the varietal characteristics o dark gray forest soils of the Nizhniy Novgorod region. The study was carried out on varieties Margarita, Marusya and Sofia. In connection with this problem, above-mentioned issues are relevant to the present day. Rising the yields of spring wheat to the level of its genetically determined potential is only possible with an increase in photosynthetic productivity of crops, primarily due to the proper selection of varieties for specific soil-climatic zones. Cropping pattern should provide the absorption of at least 2% of PAR. The main absorbing body is a leaf. Therefore the need for a crop with optimum leaf surface area. The study revealed the following, the maximum leaf area of plants of spring wheat is formed in earing seed treatment by Nano-Gro. On average, during the growing season net photosynthesis productivity of Margarita variety was 4.5-5.7 g/m2, Maroussia - 4.6-4.8 g/m2 and Sofia - 3.8-5.2 g/m2. Maximum values of net photosynthetic productivity of crops are characterized by variations in seed treatment by Nano-Gro and Margarita variety. The highest efficiency (2.46, 2.57 and 2.55 kg by 1000 units) was observed on the leaves treated by Nano-Gro and the efficiency of Coefficient of performance (COP) of photosynthetically active radiation (PAR) is 1,54-1,81 %. Margarita and Marussia were characterized by maximum values of productivity of leaf and Coefficient of performance (COP) of photosynthetically active radiation (PAR).

2019 ◽  
pp. 117-121
Author(s):  
Alexander Dikan ◽  
Domnica Kashirina ◽  
Irina Ryff

Приводятся результаты трехлетних исследований по клону 337 сорта Каберне-Совиньон в Западном предгорно-приморском районе Крыма. Показано влияние различной нагрузки на куст (11, 17 и 22 глазка) и зеленых операций (чеканка побегов, нормирование урожая, удаление листьев в зоне гроздей с восточной стороны) на величину урожая и коэффициент полезного действия (КПД) фотосинтетически активной радиации (ФАР). Установлено, что максимальная величина КПД ФАР была 0,52% при нагрузке на куст в две лозы плодоношения без последующих зеленых операций. Изменение КПД ФАР на 93,4% зависит от изменения площади листовой поверхности куста. Между КПД ФАР и урожаем винограда с куста существует сильная линейная корреляционная связь и регрессионная зависимость. Изменение массы урожая винограда с куста на 99,9% зависит от изменения площади листовой поверхности куста и КПД ФАР. Увеличенная нагрузка до 17-22 глазков при обрезке будет способствовать наиболее рациональному использованию ресурсов продуктивности кустов клона 337 сорта Каберне-Совиньон в Западном предгорно-приморском районе Крыма.The paper summarizes results of a three-year study on clone 337 of ‘Cabernet Sauvignon’ cultivar in the western piedmont-coastal region of Crimea. The paper demonstrates the influence of various bush loads (11, 17 and 22 eyes) and green operations (shoot trimming, harvest regulation, leaf removal in the bunch area on the eastern side) on the yield size and efficiency coefficient of photosynthetically active radiation. It was found that the maximum efficiency of photosynthetically active radiation made 0.52% with the bush load of two fruiting canes without subsequent green operations. The 93.4% variance of the efficiency coefficient of photosynthetically active radiation is dependent on leaf surface area variations of the bush. There is a strong linear correlation and regressional relationship between the efficiency of photosynthetically active radiation and the yield of grapes per bush. The 99.9% increase of the yield per bush weight depends on the change in the leaf surface area of the bush and the efficiency coefficient of photosynthetically active radiation. Increasing the load up to 17-22 buds when pruning will contribute to the most rational use of bush productivity resources of clone 337 of ‘Cabernet Sauvignon’ in the western piedmont-coastal region of Crimea.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 545-554 ◽  
Author(s):  
David Chikoye ◽  
Leslie A. Hunt ◽  
Clarence J. Swanton

The influence of weeds on crop yield is not only dependent on weed-related factors such as density and time of emergence, but also on environmental and management factors that affect both the weed and crop through time. This study was undertaken to develop the first physiologically based dry bean model that would account for the influence of weed competition. The specific objective was to develop a model that would account for the influence of weed competition on crop yield, and to use this model to test the hypothesis that crop yield losses resulted from competition for photosynthetically active radiation (PAR). To this end, a model that simulated the growth and development of dry bean was developed. The model performed daily calculations and simulated the phenology, leaf area expansion, dry matter production and distribution, and grain yield of dry bean based on weather and management information, but assumed adequate water and nutrients. The model was calibrated without weed competition at two locations and yr, and for these situations, adequately described the growth and development of the crop. Simulations were then run for five common ragweed densities and two times of emergence. Common ragweed leaf area was read into the model from input files and used to simulate weed shading. Shading of the dry bean canopy by common ragweed accounted for about 50 to 70% of the yield losses observed in field studies when weeds emerged with the crop. Weed shading did not account for the yield reduction measured from weeds that emerged at the second trifoliate stage of crop growth. The agreement between model predictions and field studies was consistent with the hypothesis that competition for PAR was a principal factor in weed-crop interaction. The ability to account for differences in weed densities, management, and environmental conditions suggested that modeling was a useful tool for evaluating the interaction among weeds and crops.


2008 ◽  
Vol 38 (6) ◽  
pp. 1695-1700
Author(s):  
Peter M. Lafleur ◽  
Andrew G. Farnsworth

We measured interaction of photosynthetically active radiation (PAR) at a staghorn sumac ( Rhus typhina L.) canopy near Peterborough, Ontario, during summer 2006. Measurements included above-canopy and below-canopy incoming and reflected PAR fluxes and leaf area index (LAI). The ratio of down-welling PAR below the canopy to the flux incident at the top of the canopy (τ) and proportion of incident PAR absorbed by the canopy (fPAR), were calculated. While the canopy was leafless, the sumac stems absorb 10%–20% of incident PAR. LAI increased rapidly during the month of June, and correspondingly τ decreased rapidly while fPAR increased rapidly. Mean values of τ and fPAR at maximum LAI were 0.38±0.09 (SD) and 0.60 ±0.04, respectively. Neither variable showed a relationship with solar zenith angle. We present a simple idealized model of PAR interaction with sumac. Although only one stand was studied, we hypothesize that these results may be more widely applicable to other mature sumac stands.


Author(s):  
Ashok K. Garg ◽  
Rajesh Kaushal ◽  
Vishal S. Rana

The present investigation was conducted on 6 years old kiwifruit vines cultivar ‘Allison’ at a spacing of 4.0 m × 6.0 m for two consecutive years 2018-19 and 2019-20 at experimental block of Department of Fruit Science, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan (HP). The experiment was laid out in triplicate in Randomized Block Design with 8 treatments under three farming systems viz., Inorganic Fertilizer Based System (IFBS), Organic Farming Based System (OFBS) and Subhash Palekar’s Natural Farming System (SPNFS). The maximum leaf area (158.1 cm2), leaf area index (4.36), chlorophyll index (51.2), comparative photosynthetically active radiation (612 µ mol quanta m-2 s-1) was found in the treatment (T8) receiving 30 liters of jeevaamrit (JM) + 3 kg ghana jeevaamrit and 40 kg FYM per vine under SPNFS. Among OFBS, the treatment T2 (100% recommended dose of nitrogen (RDN) through vermicompost and poultry manure on 50:50 basis) observed maximum leaf area (151.8 cm2), leaf area index (4.35), comparative photosynthetically active radiation (642 µ mol quanta m-2 s-1) but lower significantly lower chlorophyll index (51.2) over T1 (Recommended dose of inorganic fertilizers + FYM) treatment of IFBS. Hence application of 30 litres jeevaamrit and 3 kg ghana jeevaamrit (both in 3 equal splits first in end of January, second in February and third in the month of April) along with 40 kg FYM per vine or alternatively substitution of 100% RDN through vermicompost and poultry manure on 50:50 basis along with 40 kg FYM were found to be best and alternate different option in place of inorganic fertilizers to ‘Allison’ cultivar of kiwifruit under mid-hill conditions of Himachal Pradesh, India. Furthermore, the research emphases mainly on improving soil health without compromising growth and yield of kiwifruits in the region. By using alternative sources of nutrients, farmers can obtain the comparable growth and yield of kiwifruits.


2021 ◽  
Vol 304-305 ◽  
pp. 108407
Author(s):  
Cheryl Rogers ◽  
Jing M. Chen ◽  
Holly Croft ◽  
Alemu Gonsamo ◽  
Xiangzhong Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document