scholarly journals Studying auroral activity using the SME index at the magnetic storm main phase during CIR and ICME events

2021 ◽  
Vol 7 (4) ◽  
pp. 18-23
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

In this paper, we examine the relationship of the SME index with magnetic storm characteristics and interplanetary medium parameters during the main phase of magnetic storms caused by CIR and ICME events. Over the period 1990–2017, 107 magnetic storms driven by (64) CIR and (43) ICME events have been selected. In contrast to AE and Kp, a stronger correlation is shown to exist between the average SME index (SMEaver) and interplanetary medium parameters during the magnetic storm main phase. Close correlation coefficients between SMEaver and the SW electric field (southward IMF Bz) have been obtained for CIR and ICME events. SMEaver has been found to increase with the rate of magnetic storm development and |Dstmin|. For CIR and ICME events, no difference has been revealed between SMEaver and |Dstmin| in linear regression equations.

2021 ◽  
Vol 7 (4) ◽  
pp. 19-24
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

. In this paper, we examine the relationship of the SME index with magnetic storm characteristics and interplanetary medium parameters during the main phase of magnetic storms caused by CIR and ICME events. Over the period 1990–2017, 107 magnetic storms driven by (64) CIR and (43) ICME events have been selected. In contrast to AE and Kp, a stronger correlation is shown to exist between the average SME index (SMEaver) and interplanetary medium parameters during the magnetic storm main phase. Close correlation coefficients between SMEaver and the SW electric field (southward IMF Bz) have been obtained for CIR and ICME events. SMEaver has been found to increase with the rate of magnetic storm development and |Dstmin|. For CIR and ICME events, no difference has been revealed between SMEaver and |Dstmin| in linear regression equations.


2020 ◽  
Vol 6 (1) ◽  
pp. 43-50
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

In this study, we examine the relationship of the ASY-H index characterizing the partial ring current intensity with interplanetary medium parameters and auroral activity during the main phase of magnetic storms, induced by the solar wind (SW) of different types. Over the period 1979–2017, 107 magnetic storms driven by CIR and ICME (MC + Ejecta) events have been selected. We consider magnetic storms with Dstmin≤ – 50 nT. The average ASY-H index (ASYaver) during the magnetic storm main phase is shown to increase with increasing SW electric field and southward IMF Bz regardless of SW type. There is no relationship between ASYaver and SW velocity. For the CIR and ICME events, the average AE (AEaver) and Kp (Kp aver) indices have been found to correlate with ASYaver. The highest correlation coefficient between AEaver and ASYaver (r = 0.74) is observed for the magnetic storms generated by CIR events. A closer relationship between Kp aver and ASYaver (r = 0.64) is observed for the magnetic storms induced by ICME events. The ASYaver variations correlate with Dstmin. The relationship between ASYaver and the rate of storm development is weak.


2020 ◽  
Vol 6 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

In this study, we examine the relationship of the ASY-H index characterizing the partial ring current intensity with interplanetary medium parameters and auroral activity during the main phase of magnetic storms, induced by the solar wind (SW) of different types. Over the period 1979–2017, 107 magnetic storms driven by CIR and ICME (MC + Ejecta) events have been selected. We consider magnetic storms with Dstmin≤ – 50 nT. The average ASY-H index (ASYaver) during the magnetic storm main phase is shown to increase with increasing SW electric field and southward IMF Bz regardless of SW type. There is no relationship between ASYaver and SW velocity. For the CIR and ICME events, the average AE (AEaver) and Kp (Kp aver) indices have been found to correlate with ASYaver. The highest correlation coefficient between AEaver and ASYaver (r = 0.74) is observed for the magnetic storms generated by CIR events. A closer relationship between Kp aver and ASYaver (r = 0.64) is observed for the magnetic storms induced by ICME events. The ASYaver variations correlate with Dstmin. The relationship between ASYaver and the rate of storm development is weak.


1976 ◽  
Vol 16 (78) ◽  
pp. 129
Author(s):  
PN Vance

The relationship between grain yield and five plant characters in grain sorghum hybrid Pioneer 846 was studied. Grain yield was closely correlated with head weight, weight of a standard length of peduncle (WSP), peduncle perimeter (PP), head length and breadth. The close correlation of grain yield on WSP was shown to exist at a number of sites and for a number of varieties. However, regression equations differed for different sites, sowing dates and varieties. Of the two components of grain yield per head, single grain weight and grain number; only grain number was closely correlated with WSP. In one instance where moisture stress affected grain development, grain number but not yield was closely correlated with WSP. WSP was shown not to be affected by damage to the head and could therefore be used to estimate potential yield in agronomic trials where yield loss due to pest activity has occurred.


1958 ◽  
Vol 6 ◽  
pp. 295-311
Author(s):  
V. C. A. Ferraro

The evidence in favour of a corpuscular theory of magnetic storms is briefly reviewed and reasons given for believing that the stream must be neutral but ionized and carry no appreciable current. It is shown that under suitable conditions the stream is able to pass freely through a solar magnetic field; the stream may also be able to carry away with it a part of this field. However, because of geometrical broadening of the stream during its passage from the sun to the earth, the magnetic field imprisoned in the gas may be wellnigh unobservable near the earth.The nature, composition and dimensions of the stream near the earth are discussed and it is concluded that on arrival the stream will present very nearly a plane surface to the earth if undistorted by the magnetic field.Because of its large dimensions, the stream will behave as if it were perfectly conducting. During its advance in the earth's magnetic field the currents induced in the stream will therefore be practically confined to the surface. The action of the magnetic field on this current is to retard the surface of the stream which being highly distortible will become hollowed out. Since the stream surface is impervious to the interpenetration of the magnetic tubes of force, these will be compressed in the hollow space. The intensity of the magnetic field is thereby increased and this increase is identified with the beginning of the first phase of a magnetic storm. This increase will be sudden, as observed, owing to the rapid approach of the stream to the earth.The distortion of the stream surface is discussed and it is pointed out that two horns will develop on the surface, one north and the other south of the geomagnetic equator. Matter pouring through these two horns will find its way to the polar regions.The main phase of a magnetic storm seems most simply explained as due to a westward ring-current flowing round the earth in its equatorial plane. Under suitable conditions such a ring-current would be stable if once set up. The mode of formation of the ring is, however, largely conjectural. The possibility that the main phase may be of atmospheric origin is also briefly considered. It is shown that matter passing through the two horns to the polar regions could supply the energy necessary for the setting up of the field during the main phase. The magnetic evidence in favour of such a hypothesis, however, seems wanting.


2002 ◽  
Vol 20 (11) ◽  
pp. 1737-1741 ◽  
Author(s):  
R. Schödel ◽  
K. Dierschke ◽  
W. Baumjohann ◽  
R. Nakamura ◽  
T. Mukai

Abstract. The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS) in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms)


2011 ◽  
Vol 51 (8) ◽  
pp. 1105-1108 ◽  
Author(s):  
V. A. Ivanova ◽  
N. M. Polekh ◽  
K. G. Ratovskii ◽  
D. V. Ivanov

Sign in / Sign up

Export Citation Format

Share Document