scholarly journals Quantum Mechanics and Liouville's Equation

Quanta ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 53
Author(s):  
Michael Nauenberg

In non-relativistic quantum mechanics, the absolute square of Schrödinger's wave function for a particle in a potential determines the probability of finding it either at a position or momentum at a given time. In classical mechanics the corresponding problem is determined by the solution of Liouville's equation for the probability density of finding the joint position and momentum of the particle at a given time. Integrating this classical solution over either one of these two variables can then be compared with the probability in quantum mechanics. For the special case that the force is a constant, it is shown analytically that for an initial Gaussian probability distribution, the solution of Liouville's integrated over momentum is equal to Schrödinger's probability function in coordinate space, provided the coordinate and momentum initial widths of this classical solution satisfy the minimal Heisenberg uncertainty relation. Likewise, integrating Lioville's solution over position is equal to Schrödinger's probability function in momentum space.Quanta 2017; 6: 53–56.

The steady development of the quantum theory that has taken place during the present century was made possible only by continual reference to the Correspondence Principle of Bohr, according to which, classical theory can give valuable information about quantum phenomena in spite of the essential differences in the fundamental ideas of the two theories. A masterful advance was made by Heisenberg in 1925, who showed how equations of classical physics could be taken over in a formal way and made to apply to quantities of importance in quantum theory, thereby establishing the Correspondence Principle on a quantitative basis and laying the foundations of the new Quantum Mechanics. Heisenberg’s scheme was found to fit wonderfully well with the Hamiltonian theory of classical mechanics and enabled one to apply to quantum theory all the information that classical theory supplies, in so far as this information is consistent with the Hamiltonian form. Thus one was able to build up a satisfactory quantum mechanics for dealing with any dynamical system composed of interacting particles, provided the interaction could be expressed by means of an energy term to be added to the Hamiltonian function. This does not exhaust the sphere of usefulness of the classical theory. Classical electrodynamics, in its accurate (restricted) relativistic form, teaches us that the idea of an interaction energy between particles is only an approxi­mation and should be replaced by the idea of each particle emitting waves which travel outward with a finite velocity and influence the other particles in passing over them. We must find a way of taking over this new information into the quantum theory and must set up a relativistic quantum mechanics, before we can dispense with the Correspondence Principle.


2014 ◽  
Vol 11 (10) ◽  
pp. 1450086 ◽  
Author(s):  
Horace W. Crater ◽  
Luca Lusanna

After a review of the existing theory of non-inertial frames and mathematical observers in Minkowski space-time we give the explicit expression of a family of such frames obtained from the inertial ones by means of point-dependent Lorentz transformations as suggested by the locality principle. These non-inertial frames have non-Euclidean 3-spaces and contain the differentially rotating ones in Euclidean 3-spaces as a subcase. Then we discuss how to replace mathematical accelerated observers with dynamical ones (their world-lines belong to interacting particles in an isolated system) and how to define Unruh–DeWitt detectors without using mathematical Rindler uniformly accelerated observers. Also some comments are done on the transition from relativistic classical mechanics to relativistic quantum mechanics in non-inertial frames.


2019 ◽  
Author(s):  
Rainer Kühne

I examine the groups which underly classical mechanics, non-relativistic quantum mechanics, special relativity, relativistic quantum mechanics, quantum electrodynamics, quantum flavourdynamics, quantum chromodynamics, and general relativity. This examination includes the rotations SO(2) and SO(3), the Pauli algebra, the Lorentz transformations, the Dirac algebra, and the U(1), SU(2), and SU(3) gauge transformations. I argue that general relativity must be generalized to Einstein-Cartan theory, so that Dirac spinors can be described within the framework of gravitation theory.


Author(s):  
Rainer Kühne

I examine the groups which underly classical mechanics, non-relativistic quantum mechanics, special relativity, relativistic quantum mechanics, quantum electrodynamics, quantum flavourdynamics, quantum chromodynamics, and general relativity. This examination includes the rotations SO(2) and SO(3), the Pauli algebra, the Lorentz transformations, the Dirac algebra, and the U(1), SU(2), and SU(3) gauge transformations. I argue that general relativity must be generalized to Einstein-Cartan theory, so that Dirac spinors can be described within the framework of gravitation theory.


1984 ◽  
Vol 14 (9) ◽  
pp. 883-906 ◽  
Author(s):  
D. P. Greenwood ◽  
E. Prugovečki

1991 ◽  
Vol 253 ◽  
Author(s):  
B. L. Gyorffy

The symmetry properties of the Dirac equation, which describes electrons in relativistic quantum mechanics, is rather different from that of the corresponding Schr6dinger equation. Consequently, even when the velocity of light, c, is much larger than the velocity of an electron Vk, with wave vector, k, relativistic effects may be important. For instance, while the exchange interaction is isotropic in non-relativistic quantum mechanics the coupling between spin and orbital degrees of freedom in relativistic quantum mechanics implies that the band structure of a spin polarized metal depends on the orientation of its magnetization with respect to the crystal axis. As a consequence there is a finite set of degenerate directions for which the total energy of the electrons is an absolute minimum. Evidently, the above effect is the principle mechanism of the magneto crystalline anisotropy [1]. The following session will focus on this and other qualitatively new relativistic effects, such as dichroism at x-ray frequencies [2] or Fano effects in photo-emission from non-polarized solids [3].


2007 ◽  
Vol 22 (32) ◽  
pp. 6243-6251 ◽  
Author(s):  
HRVOJE NIKOLIĆ

The conserved probability densities (attributed to the conserved currents derived from relativistic wave equations) should be nonnegative and the integral of them over an entire hypersurface should be equal to one. To satisfy these requirements in a covariant manner, the foliation of space–time must be such that each integral curve of the current crosses each hypersurface of the foliation once and only once. In some cases, it is necessary to use hypersurfaces that are not spacelike everywhere. The generalization to the many-particle case is also possible.


Sign in / Sign up

Export Citation Format

Share Document