FINITE ELEMENT ANALYSIS FOR TEXTILE COMPOSITES USING FIBER-BUNDLES/MATRIX-RESIN SEPARATED MESH

2021 ◽  
Author(s):  
AKINORI YOSHIMURA ◽  
KENJI IWATA ◽  
KEITA GOTO ◽  
MASAHIRO ARAI

This paper proposes a finite element modeling method for textile composite, in which fiber bundle and matrix resin are separately meshed, and they are connected by using discontinuous Galerkin (DG) method. The fiber bundle geometry is often complex in the textile composite. In the conventional FEM, it causes small, distorted resin elements surrounded by the fiber bundles, because the resin must be meshed along the fiber bundle geometry. These distorted elements result in the increased effort to meshing, computing cost, and degraded accuracy. In the proposed method, we apply the DG method to the 3-dimensional analysis of the textile composite. DG method is a method which can connect two separately divided meshes in the FEM. The method proposed in this paper has a distinct advantage, because matrix resin has not to be meshed along the fiber bundle geometry. Moreover, regular cubic grid mesh can be used for matrix resin. In the present paper, the formulation of the DG method is presented first. The method and results of the microscopic stress analysis for textile composite is then described. The results agree well with those of conventional FEM, and validity of the proposed method is demonstrated.

2007 ◽  
Vol 23 ◽  
pp. 229-232
Author(s):  
Liliana Sandu ◽  
Nicolae Faur ◽  
Cristina Bortun ◽  
Sorin Porojan

Several studies evaluated the removable partial dentures by the finite element analysis, but none of them evaluated thermal stresses. The purpose of the study was to explore the influence of thermal oral changes induced by hot/cold liquids and food on the circumferential cast clasps of removable partial dentures. A 3-dimensional finite element method was used to explore the temperature distribution, thermal stress and the influence of thermal changes on stresses and displacements of circumferential clasps during functions. Thermal variations induce stresses in dental clasps, high temperatures having a more aggressive effect than lower one. Cold liquids and food induce high stresses in the retentive clasp arms while hot ones in the occlusal rests of the clasps and for the back action clasp also in the minor connector. The study suggests the importance of consFigureidering thermal variations for stress analyses of the cast clasps.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


2011 ◽  
Vol 217-218 ◽  
pp. 1758-1762
Author(s):  
Tao Chang

As the most potential member in the textile composite material, stitched textile composites have already been paid a lot attention. By the simply technology form and relatively low cost, stitched composites had attracted many domestic and foreign researchers, and were gradually used in various engineering practice. This paper using 3D micro-finite element method researches the mechanical behavior and performance of stitched composites, establishing a 3D micro-finite element model for the stitched composites under the improved locking suture way. Through analysis, it shows that each material’s stress distribution characteristics under external loading and finds that the results of this paper’s finite element data results matching well with previous studies’ results, proving the feasibility of this study, so it can be used for forecasting the mechanical properties of a variety of practical stitched composites.


Sign in / Sign up

Export Citation Format

Share Document