scholarly journals Elasticity Analysis of Orthotropic Plate under Concentrated Force

Author(s):  
PU-RONG JIA ◽  
YONG-YONG SUO ◽  
QIANG WANG ◽  
LEI-LEI ZENG
2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 59-72 ◽  
Author(s):  
Hasan Nagiar ◽  
Tasko Maneski ◽  
Vesna Milosevic-Mitic ◽  
Branka Gacesa ◽  
Nina Andjelic

Membrane walls are very important structural parts of water-tube boiler construction. Based on their specific geometry, one special type of finite element was defined to help model the global boiler construction. That is the element of reduced orthotropic plate with two thicknesses and two elasticity matrixes, for membrane and bending load separately. A global model of the boiler construction showed that the high value of stress is concentrated in plates of the buckstay system in boiler corners. Validation of the new finite element was done on the local model of the part of membrane wall and buckstay. A very precise model of tubes and flanges was compared to the model formed on the element of a reduced orthotropic plate. Pressure and thermal loads were discussed. Obtained results indicated that the defined finite element was quite favorable in the design and reconstruction of the boiler substructures such as a buckstay system.


Author(s):  
T Stewart ◽  
Z M Jin ◽  
D Shaw ◽  
D D Auger ◽  
M Stone ◽  
...  

The tibio-femoral contact area in five current popular total knee joint replacements has been measured using pressure-sensitive film under a normal load of 2.5 kN and at several angles of flexion The corresponding maximum contact pressure has been estimated from the measured contact areas and found to exceed the point at which plastic deformation is expected in the ultra-high molecular weight polyethylene (UHMWPE) component particularly at flexion angles near 90°. The measured contact area and the estimated maximum contact stress have been found to be similar in magnitude for all of the five knee joint replacements tested. A significant difference, however, has been found in maximum contact pressure predicted from linear elasticity analysis for the different knee joints. This indicates that varying amounts of plastic deformation occurred in the polyethylene component in the different knee designs. It is important to know the extent of damage as knees with large amounts of plastic deformation are more likely to suffer low cycle fatigue failure. It is therefore concluded that the measurement of contact areas alone can be misleading in the design of and deformation in total knee joint replacements. It is important to modify geometries to reduce the maximum contact stress as predicted from the linear elasticity analysis, to below the linear elastic limit of the plastic component.


Ecology ◽  
2000 ◽  
Vol 81 (3) ◽  
pp. 605 ◽  
Author(s):  
Selina Heppell ◽  
Cathy Pfister ◽  
Hans de Kroon

AIAA Journal ◽  
1969 ◽  
Vol 7 (1) ◽  
pp. 151-153 ◽  
Author(s):  
RENE AMON ◽  
O. E. WIDERA

Sign in / Sign up

Export Citation Format

Share Document