scholarly journals Effects of Operating Environmental on Real-World NOX Emissions and Fuel Consumption for Heavy-duty Diesel Trucks

Author(s):  
Yue-yun XU ◽  
Qian FENG ◽  
Ji-guang WANG ◽  
He LV ◽  
Jing-yuan LI ◽  
...  
2017 ◽  
Vol 17 (10) ◽  
pp. 2585-2594 ◽  
Author(s):  
Liqiang He ◽  
Jingnan Hu ◽  
Shaojun Zhang ◽  
Ye Wu ◽  
Xing Guo ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 535 ◽  
Author(s):  
Christos Keramydas ◽  
Leonidas Ntziachristos ◽  
Christos Tziourtzioumis ◽  
Georgios Papadopoulos ◽  
Ting-Shek Lo ◽  
...  

Heavy-duty diesel trucks (HDDTs) comprise a key source of road transport emissions and energy consumption worldwide mainly due to the growth of road freight traffic during the last two decades. Addressing their air pollutant and greenhouse gas emissions is therefore required, while accurate emission factors are needed to logistically optimize their operation. This study characterizes real-world emissions and fuel consumption (FC) of HDDTs and investigates the factors that affect their performance. Twenty-two diesel-fueled, Euro IV to Euro VI, HDDTs of six different manufacturers were measured in the road network of the Hong Kong metropolitan area, using portable emission measurement systems (PEMS). The testing routes included urban, highway and mixed urban/highway driving. The data collected corresponds to a wide range of driving, operating, and ambient conditions. Real-world distance- and energy-based emission levels are presented in a comparative manner to capture the effect of after-treatment technologies and the role of the evolution of Euro standards on emissions performance. The emission factors’ uncertainty is analyzed. The impact of speed, road grade and vehicle weight loading on FC and emissions is investigated. An analysis of diesel particulate filter (DPF) regenerations and ammonia (NH3) slip events are presented along with the study of Nitrous oxide (N2O) formation. The results reveal deviations of real-world HDDTs emissions from emission limits, as well as the significant impact of different operating and driving factors on their performance. The occasional high levels of N2O emissions from selective catalytic reduction equipped HDDTs is also revealed, an issue that has not been thoroughly considered so far.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121771
Author(s):  
Yu Jiang ◽  
Yi Tan ◽  
Jiacheng Yang ◽  
Georgios Karavalakis ◽  
Kent C. Johnson ◽  
...  

Author(s):  
Xiaodong Zhang ◽  
Jinliang Xu ◽  
Menghui Li ◽  
Qunshan Li ◽  
Lan Yang

Heavy-duty trucks contribute a significant component of all transportation in cargo terminals, such as Shaanxi Province, China. The emissions from these vehicles are the primary source of carbon emissions during highway operations. While several studies have attempted to address emission issues by improving traffic operations, a few focused on the relationship between emissions and highway geometric design, especially for heavy-duty trucks. The primary goal of this research was to understand the impact of circular curve on carbon dioxide (CO2) emissions produced by heavy-duty diesel trucks. Firstly, appropriate parameters were specified in MOVES (motor vehicle emission simulator) model according to the geometrical characteristics. Fuel consumption, speed and location data were collected by hiring five skilled drivers on the automotive proving ground located at Chang’an University, Shaanxi Province. The associated carbon emission data were derived from fuel consumption data by applying the IPCC (Intergovernmental Panel on Climate Change) method. After this, the applicability of MOVES model was verified by the field experiment. Moreover, a multiple regression model for CO2 emissions incorporated with roadway segment radius, circular curve length, and initial vehicle speed was established with data generated by the MOVES model. The proposed CO2 emission model was also verified by field experiment with relative error of 6.17%. It was found that CO2 emission had monotone decreasing property with radius increasing, and the minimum radius that influenced diesel CO2 emission was 550 m. The proposed quantitative CO2 emission model can provide a reference for low-carbon highway design, leading to environment-friendly transportation construction.


2002 ◽  
Author(s):  
Michal Vojtisek-Lom ◽  
Douglas C. Lambert ◽  
P. Joshua Wilson

2016 ◽  
Vol 2 (3) ◽  
pp. 156-172 ◽  
Author(s):  
David C. Quiros ◽  
Arvind Thiruvengadam ◽  
Saroj Pradhan ◽  
Marc Besch ◽  
Pragalath Thiruvengadam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document