scholarly journals Synthesis, Characterization and Microwave Dielectric Properties of Ni0.5Ti0.5NbO4 Ceramics Produced Through the Solid State Reaction Method

Author(s):  
Jinxin Bi ◽  
Changhong Yang ◽  
Haitao Wu
2011 ◽  
Vol 687 ◽  
pp. 199-203 ◽  
Author(s):  
Ching Fang Tseng

The microwave dielectric properties of the Mg(Zr0.05Ti0.95)O3ceramics with CuO addition were investigated. All specimens were prepared by solid-state reaction method and sintered at 1270-1420°C for 4 h. When CuO was added, the second phases of MgTi2O5, TiO2and liquid phase were produced. For specimens with 1.5 wt% CuO sintered at 1300°C, the dielectric constant,Q´fand tfvalues are 18.2, 223000 GHz and -2 ppm/°C, respectively.


2017 ◽  
Vol 5 (16) ◽  
pp. 4040-4047 ◽  
Author(s):  
Shenhui Lei ◽  
Huiqing Fan ◽  
Xiaohu Ren ◽  
Jiawen Fang ◽  
Longtao Ma ◽  
...  

Pure phase ZnTiO3 ceramics were successfully synthesized for the first time by a solid state reaction method.


2012 ◽  
Vol 512-515 ◽  
pp. 1198-1202
Author(s):  
Jia Mao Li ◽  
Tai Qiu

Microstructures and microwave dielectric properties of Ca(Sm0.5Nb0.5)O3 ceramics, prepared by a conventional solid-state reaction method, were systematically investigated by varying calcining temperature, sintering temperature and cooling rate. The XRD result showed that a single Ca(Sm0.5Nb0.5)O3 phase could be synthesized at a calcining temperature of 1200 °C. Optimized combination of microwave dielectric properties of εr = 22.36, Q×f = 18030 GHz and τf = -31.2 ppm/°C was obtained for furnace-cooled Ca(Sm0.5Nb0.5)O3 ceramics sintered at 1550 °C for 4 h. However, some microcracks were found from the microstructures of the furnace-cooled specimens. Further, the Q×f value could be increased by controlling the cooling rate during the sintering process due to the disappearance of microcracks in the final material. With a cooling rate of 2 °C/min, Ca(Sm0.5Nb0.5)O3ceramics exhibited an enhanced Q×f value of 37130 GHz.


2007 ◽  
Vol 280-283 ◽  
pp. 35-38 ◽  
Author(s):  
Ai Min Yang ◽  
Wei Chen ◽  
Lan Luo

(1-x)La2/3TiO3-xLa(Mg1/2Ti1/2)O3 ceramics with x ranging from 0.01 to 0.3 were prepared by the conventional solid-state reaction method. Microstructure and microwave dielectric properties were studied. The perovskite compound La2/3TiO3 is stabilized when x = 0.1. The content of La2/3TiO3 increases with increasing x from 0.01 to 0.1, and thereafter decreases when x > 0.1. The same tendency was also observed on measuring the dielectric constant, temperature coefficient of resonant frequency and Q× ƒ. A maximum permittivity of 77.35 was achieved with these stabilized La2/3TiO3 ceramics. Close to zero τf value (1 ppm/°C) was obtained at x=0.3, but its Q× ƒ value was relative low.


2007 ◽  
Vol 336-338 ◽  
pp. 272-274
Author(s):  
S.S. Cheng ◽  
J. Luo ◽  
Zhao Xian Xiong

Microwave ceramics of Ba(Mg0.2/3Zn0.8/3Nb2/3)O3 and Ba1-xSrx(Mg0.2/3Zn0.8/3Nb2/3)O3 were synthesized with conventional solid-state reaction method. Dielectric properties of the samples were studied as functions of compositions and sintering temperatures. Experimental results show that a higher Q×f value is reached by substituting Zn ions with Mg ions and a near-zero temperature coefficient of resonant frequency is obtained by replacing Ba ions with Sr ions.


2013 ◽  
Vol 675 ◽  
pp. 200-204
Author(s):  
Fei Shi ◽  
Peng Cheng Du ◽  
Jing Xiao Liu ◽  
Ji Wei Wu ◽  
De Qing Chen ◽  
...  

The Mg2SiO4-MgTiO3-CaTiO3 composite dielectric ceramics with different Mg2SiO4 addition amounts were prepared by solid state reaction method. The effects of Mg2SiO4 addition amounts on the microstructure and dielectric properties as well as sintering temperature of xMg2SiO4-(0.95-x)MgTiO3-0.05CaTiO3 (abbreviated as xMSTC, 0.25≦x≦0.75) composite ceramics were investigated. The results indicated that the sintering temperature of MgTiO3-CaTiO3 based ceramics with Mg2SiO4 addition could be lowered effectively to 1320~1340°C, and the dielectric constant decreased and dielectric loss increased gradually with the increase of Mg2SiO4 content. The 0.45MSTC ceramics containing 45 wt% Mg2SiO4 and sintered at 1340°C showed desirable dielectric properties with dielectric constant εr=13.3,dielectric loss tanδ=4.5×10-4 and temperature coefficient of relative permittivity τε =10 ppm/°C.


Sign in / Sign up

Export Citation Format

Share Document