The Performance of Ten Bread Wheat Genotypes Associated with Yield and Yield Components under Water Stress Conditions

2014 ◽  
Vol 18 (3) ◽  
pp. 415-428
Author(s):  
E. M. S. Gheith ◽  
M. A. Abd El-Shafi ◽  
A. A. Abd El-Mohsen ◽  
H. S. Suleiman
1998 ◽  
Vol 3 (2) ◽  
pp. 13
Author(s):  
R. Ahmad ◽  
N. Ahmad ◽  
J.C. Stark ◽  
A. Tanveer

Yield and developmental characteristics of crop genotypes grown at different levels of water availability are often used to select genotypes that are adapted to variable moisture environments. Field studies were conducted at Aberdeen. Idaho, USA in 1992 and 1993 to evaluate the effects of varying moisture supply on grain yield and yield components of spring wheat genotypes. In both years, 12 spring wheat (Triticum aestivum L.) genotypes were grown under three irrigation levels (well-watered. moderate water-stress and severe water-stress) imposed during the periods from mid-tillering to anthesis with a line source sprinkler irrigation system. Grain yield and yield components (spikes m-2, spikelets spike-1, kernels spikelet-1,  kernels spike-1, and kernel weight) were used to evaluate the genotypic response to water stress. Overall, water stress caused a reduction in grain yield and yield components. Genotypes exhibited a large year-to-year variation in their ranks for grain yield. Medium-tall growing genotypes (IDO 367. lDO 369 and Rick) generally produced high yields under water stress conditions in 1992 (relatively dry year), while short -medium genotypes (WPB 926. Yecora Rojo and Pondera) produced high yields under water stress conditions in 1993 (relatively wet year). Chris and Serra were the lowest yielding genotypes under water stress conditions in both years. Under moderate stress conditions. 100 367 and Yecora Rojo had consistently high yields. Genotypic yield differences under water stress conditions were primarily related to the differences in the numbers of spikes m". Therefore, a tendency for high plasticity for Spikes per unit area could be used to select wheat genotypes for improved drought tolerance.


2017 ◽  
Vol 48 (3) ◽  
Author(s):  
Mohammed & Kadhem

A field experiment was conducted during 2014 -2015 and 2015-2016 seasons at the  Field Crops Research Station Abu Ghraib, to study the effect of water stress, on yield and yield components of  bread wheat genotypes .The water stress treatment were 25% (S1) and 75% (S2) depletion of soil available water . The experiments was conucted using a split plot with in arrangement Randomized Complete Block Design with three replications. Water stress treatments were assigned to the main-plot, while, 27 wheat genotypes  were assigned to sub-plots. The results indicated that water stress treatment (S2)  significantly decreased  the number of spikes m-2,  number of grain.spike-1, 1000 grain weight and grain yield. The genotypes showed a differences in all characters studied. The genotype 26 produced the highest number of spikes m-2(355.8) and did not significantly differ from Bohooth10 347.2 spike.m-2.The Bohooth10 gave highest in the number of grain spike-1 (62.07) . The genotype 25 produced the highest weight of 1000 grains (40.05,37.09 gm)The genotype 26 produced highest grain yield (6.117 and 5.074 ton h-1 ) for two seasons, respectively but differed significantly from IPA99 which gave lowest  grains yield ( 3.395 and 3.020 Tun.h-1) for two seasons respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Zare ◽  
Aghafakhr Mirlohi ◽  
Ghodratollah Saeidi ◽  
Mohammad R. Sabzalian ◽  
Ehsan Ataii

AbstractThis study aimed to investigate the effect of yellow and brown seed coat color of flax on lignan content, seed yield, and yield components under two contrasting environments of non-stress and water stress conditions. The water stress environment intensified the discrimination between the two seed color groups as the yellow seeded families had lower values for seed yield components under the water stress. Heritability and the genetic advance for seed yield were significantly higher in brown-seeded families than those of yellow-seeded ones at water stress conditions. Secoisolariciresinol diglucoside (SDG) as the chief lignan in flaxseed was more abundant in yellow-seeded families under the non-stress environment but under water stress conditions, it increased in brown seeded families and exceeded from yellow ones. Considering that the brown and yellow seed color families were full sibs and shared a similar genetic background but differed in seed color, it is concluded that a considerable interaction exists between the flax seed color and moisture stress concerning its effect on seed yield and yield components and also the seed SDG content. Brown-seeded genotypes are probably preferred for cultivation under water stress conditions for better exploitation of flax agronomic and nutritional potentials.


Sign in / Sign up

Export Citation Format

Share Document