scholarly journals Maximizing Sequence-Submodular Functions and Its Application to Online Advertising

2021 ◽  
Author(s):  
Saeed Alaei ◽  
Ali Makhdoumi ◽  
Azarakhsh Malekian

Motivated by applications in online advertising, we consider a class of maximization problems where the objective is a function of the sequence of actions and the running duration of each action. For these problems, we introduce the concepts of sequence-submodularity and sequence-monotonicity, which extend the notions of submodularity and monotonicity from functions defined over sets to functions defined over sequences. We establish that if the objective function is sequence-submodular and sequence-nondecreasing, then there exists a greedy algorithm that achieves [Formula: see text] of the optimal solution. We apply our algorithm and analysis to two applications in online advertising: online ad allocation and query rewriting. We first show that both problems can be formulated as maximizing nondecreasing sequence-submodular functions. We then apply our framework to these two problems, leading to simple greedy approaches with guaranteed performances. In particular, for the online ad allocation problem, the performance of our algorithm is [Formula: see text], which matches the best known existing performance, and for the query rewriting problem, the performance of our algorithm is [Formula: see text], which improves on the best known existing performance in the literature. This paper was accepted by Chung Piaw Teo, optimization.

2021 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Edwar Lujan ◽  
Edmundo Vergara ◽  
Jose Rodriguez-Melquiades ◽  
Miguel Jiménez-Carrión ◽  
Carlos Sabino-Escobar ◽  
...  

This work introduces a fuzzy optimization model, which solves in an integrated way the berth allocation problem (BAP) and the quay crane allocation problem (QCAP). The problem is solved for multiple quays, considering vessels’ imprecise arrival times. The model optimizes the use of the quays. The BAP + QCAP, is a NP-hard (Non-deterministic polynomial-time hardness) combinatorial optimization problem, where the decision to assign available quays for each vessel adds more complexity. The imprecise vessel arrival times and the decision variables—berth and departure times—are represented by triangular fuzzy numbers. The model obtains a robust berthing plan that supports early and late arrivals and also assigns cranes to each berth vessel. The model was implemented in the CPLEX solver (IBM ILOG CPLEX Optimization Studio); obtaining in a short time an optimal solution for very small instances. For medium instances, an undefined behavior was found, where a solution (optimal or not) may be found. For large instances, no solutions were found during the assigned processing time (60 min). Although the model was applied for n = 2 quays, it can be adapted to “n” quays. For medium and large instances, the model must be solved with metaheuristics.


2016 ◽  
Vol 38 (4) ◽  
pp. 307-317
Author(s):  
Pham Hoang Anh

In this paper, the optimal sizing of truss structures is solved using a novel evolutionary-based optimization algorithm. The efficiency of the proposed method lies in the combination of global search and local search, in which the global move is applied for a set of random solutions whereas the local move is performed on the other solutions in the search population. Three truss sizing benchmark problems with discrete variables are used to examine the performance of the proposed algorithm. Objective functions of the optimization problems are minimum weights of the whole truss structures and constraints are stress in members and displacement at nodes. Here, the constraints and objective function are treated separately so that both function and constraint evaluations can be saved. The results show that the new algorithm can find optimal solution effectively and it is competitive with some recent metaheuristic algorithms in terms of number of structural analyses required.


Author(s):  
Tufan Dogruer ◽  
Mehmet Serhat Can

In this paper, a Fuzzy proportional–integral–derivative (Fuzzy PID) controller design is presented to improve the automatic voltage regulator (AVR) transient characteristics and increase the robustness of the AVR. Fuzzy PID controller parameters are determined by a genetic algorithm (GA)-based optimization method using a novel multi-objective function. The multi-objective function, which is important for tuning the controller parameters, obtains the optimal solution using the Integrated Time multiplied Absolute Error (ITAE) criterion and the peak value of the output response. The proposed method is tested on two AVR models with different parameters and compared with studies in the literature. It is observed that the proposed method improves the AVR transient response properties and is also robust to parameter changes.


Author(s):  
Jungho Park ◽  
Hadi El-Amine ◽  
Nevin Mutlu

We study a large-scale resource allocation problem with a convex, separable, not necessarily differentiable objective function that includes uncertain parameters falling under an interval uncertainty set, considering a set of deterministic constraints. We devise an exact algorithm to solve the minimax regret formulation of this problem, which is NP-hard, and we show that the proposed Benders-type decomposition algorithm converges to an [Formula: see text]-optimal solution in finite time. We evaluate the performance of the proposed algorithm via an extensive computational study, and our results show that the proposed algorithm provides efficient solutions to large-scale problems, especially when the objective function is differentiable. Although the computation time takes longer for problems with nondifferentiable objective functions as expected, we show that good quality, near-optimal solutions can be achieved in shorter runtimes by using our exact approach. We also develop two heuristic approaches, which are partially based on our exact algorithm, and show that the merit of the proposed exact approach lies in both providing an [Formula: see text]-optimal solution and providing good quality near-optimal solutions by laying the foundation for efficient heuristic approaches.


Author(s):  
Sankar Kumar Roy ◽  
Deshabrata Roy Mahapatra

In this chapter, the authors propose a new approach to analyze the Solid Transportation Problem (STP). This new approach considers the multi-choice programming into the cost coefficients of objective function and stochastic programming, which is incorporated in three constraints, namely sources, destinations, and capacities constraints, followed by Cauchy's distribution for solid transportation problem. The multi-choice programming and stochastic programming are combined into a solid transportation problem, and this new problem is called Multi-Choice Stochastic Solid Transportation Problem (MCSSTP). The solution concepts behind the MCSSTP are based on a new transformation technique that will select an appropriate choice from a set of multi-choice, which optimize the objective function. The stochastic constraints of STP converts into deterministic constraints by stochastic programming approach. Finally, the authors construct a non-linear programming problem for MCSSTP, and by solving it, they derive an optimal solution of the specified problem. A realistic example on STP is considered to illustrate the methodology.


Author(s):  
Sambit Kumar Mishra ◽  
Bibhudatta Sahoo ◽  
Kshira Sagar Sahoo ◽  
Sanjay Kumar Jena

The service (task) allocation problem in the distributed computing is one form of multidimensional knapsack problem which is one of the best examples of the combinatorial optimization problem. Nature-inspired techniques represent powerful mechanisms for addressing a large number of combinatorial optimization problems. Computation of getting an optimal solution for various industrial and scientific problems is usually intractable. The service request allocation problem in distributed computing belongs to a particular group of problems, i.e., NP-hard problem. The major portion of this chapter constitutes a survey of various mechanisms for service allocation problem with the availability of different cloud computing architecture. Here, there is a brief discussion towards the implementation issues of various metaheuristic techniques like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), BAT algorithm, etc. with various environments for the service allocation problem in the cloud.


Algorithmica ◽  
2019 ◽  
Vol 82 (4) ◽  
pp. 938-965
Author(s):  
Marek Chrobak ◽  
Christoph Dürr ◽  
Aleksander Fabijan ◽  
Bengt J. Nilsson

Abstract Clique clustering is the problem of partitioning the vertices of a graph into disjoint clusters, where each cluster forms a clique in the graph, while optimizing some objective function. In online clustering, the input graph is given one vertex at a time, and any vertices that have previously been clustered together are not allowed to be separated. The goal is to maintain a clustering with an objective value close to the optimal solution. For the variant where we want to maximize the number of edges in the clusters, we propose an online algorithm based on the doubling technique. It has an asymptotic competitive ratio at most 15.646 and a strict competitive ratio at most 22.641. We also show that no deterministic algorithm can have an asymptotic competitive ratio better than 6. For the variant where we want to minimize the number of edges between clusters, we show that the deterministic competitive ratio of the problem is $$n-\omega (1)$$n-ω(1), where n is the number of vertices in the graph.


Sign in / Sign up

Export Citation Format

Share Document