scholarly journals Errata—Optimal Sampling Strategies for Statistical Models with Discrete Dependent Variables

1982 ◽  
Vol 16 (1) ◽  
pp. 107-107
Author(s):  
Carlos F. Daganzo
2014 ◽  
Vol 10 (6) ◽  
pp. e1003668 ◽  
Author(s):  
Jake M. Ferguson ◽  
Jessica B. Langebrake ◽  
Vincent L. Cannataro ◽  
Andres J. Garcia ◽  
Elizabeth A. Hamman ◽  
...  

2015 ◽  
Vol 59 (8) ◽  
pp. 4907-4913 ◽  
Author(s):  
Marieke G. G. Sturkenboom ◽  
Leonie W. Mulder ◽  
Arthur de Jager ◽  
Richard van Altena ◽  
Rob E. Aarnoutse ◽  
...  

ABSTRACTRifampin, together with isoniazid, has been the backbone of the current first-line treatment of tuberculosis (TB). The ratio of the area under the concentration-time curve from 0 to 24 h (AUC0–24) to the MIC is the best predictive pharmacokinetic-pharmacodynamic parameter for determinations of efficacy. The objective of this study was to develop an optimal sampling procedure based on population pharmacokinetics to predict AUC0–24values. Patients received rifampin orally once daily as part of their anti-TB treatment. A one-compartmental pharmacokinetic population model with first-order absorption and lag time was developed using observed rifampin plasma concentrations from 55 patients. The population pharmacokinetic model was developed using an iterative two-stage Bayesian procedure and was cross-validated. Optimal sampling strategies were calculated using Monte Carlo simulation (n= 1,000). The geometric mean AUC0–24value was 41.5 (range, 13.5 to 117) mg · h/liter. The median time to maximum concentration of drug in serum (Tmax) was 2.2 h, ranging from 0.4 to 5.7 h. This wide range indicates that obtaining a concentration level at 2 h (C2) would not capture the peak concentration in a large proportion of the population. Optimal sampling using concentrations at 1, 3, and 8 h postdosing was considered clinically suitable with anr2value of 0.96, a root mean squared error value of 13.2%, and a prediction bias value of −0.4%. This study showed that the rifampin AUC0–24in TB patients can be predicted with acceptable accuracy and precision using the developed population pharmacokinetic model with optimal sampling at time points 1, 3, and 8 h.


2001 ◽  
Vol 31 (3) ◽  
pp. 683-705 ◽  
Author(s):  
Conrado Martínez ◽  
Salvador Roura

Ecotoxicology ◽  
2019 ◽  
Vol 29 (10) ◽  
pp. 1786-1793 ◽  
Author(s):  
Yang Yang ◽  
Ruth D. Yanai ◽  
Nina Schoch ◽  
Valerie L. Buxton ◽  
Kara E. Gonzales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document