scholarly journals Water quality objectives: yardsticks of the Great Lakes Water Quality Agreement.

1999 ◽  
Vol 107 (3) ◽  
pp. 239-241 ◽  
Author(s):  
M Gilbertson
1978 ◽  
Vol 35 (4) ◽  
pp. 479-481 ◽  
Author(s):  
P. T. S. Wong ◽  
Y. K. Chau ◽  
P. L. Luxon

Recommended levels of a number of metals for Great Lakes Water Quality Objectives were found to be very toxic to freshwater algae when these metals were present simultaneously in lake water and culture medium. The diatom tested was more sensitive to metal toxicity than the blue-green and green algae. Key words: metals, Water Quality Objectives, toxicity, algae, diatom, primary productivity


1994 ◽  
Vol 29 (3) ◽  
pp. 95-106
Author(s):  
Alfred P. Benoist ◽  
Gerard H. Broseliske

For priority pollutants, the international Rhine Action Programme (RAP) aims to meet the quality objectives for the Rhine, set by the International Rhine Commission (IRC), by the year 2000. An assessment must be carried out to define additional measures exceeding best available technology (BAT) for point sources and best environmental practice (BEP) for diffuse sources for those priority pollutants still violating the quality objectives of the Rhine after implementing BAT and BEP only. To carry out the required assessments, an excessive amount of work and money is needed, including the application of sophisticated calculation models. For prioritizing reasons, the Institute for Inland Water Management and Waste Water Treatment (RIZA) initiated a project called EVER, which was conducted by DHV Water BV. EVER is the abbreviation of the Dutch equivalent for Effective Distribution of Emission Reductions (Effective Verdeling van Emissie Reducties). The aim of this project is to carry out a first and crude evaluation of the impact of abatement measures (BAT and BEP), as set by the IRC for the period 1985-1995. For those pollutants still showing a violation of the quality objectives for the Rhine in the year 1995, a range finding method is used, to predict the costs and impact of abatement measures exceeding BAT and BEP on the water quality of the Rhine. So, EVER is a management tool to prioritize the work to be done within the frame-work of the IRC, triggering the application of e.g. sophisticated calculation models for a selected number of priority pollutants. In EVER, the prognosis of the reduction of specific discharge rates for approximately forty priority pollutants is given for twelve sub-catchment areas for the year 1995. This prognosis is used to predict concentrations at eight international monitoring locations in the Rhine basin, using the discharges and concentrations of the year 1985 as a reference. The predicted concentrations for the year 1995 are compared with the (preliminary) water quality objectives as set by the IRC. The results indicate, that for six of the selected pollutants the number of available data is too small for sound predictions. Fifteen of the selected pollutants will satisfy the water quality objectives in 1995. Twenty (half) of the selected pollutants will still violate the quality objectives at several monitoring locations. These twenty pollutants are the basis for priorities to be set within the frame-work of the IRC for phase 3 (1995-2000) of the RAP. For these pollutants, additional abatement measures exceeding BAT and BEP are selected in EVER for the manageable groups of sources (anthropogenic non-point sources, industrial sources and municipal sources). Each measure is analyzed separately for costs and effectiveness. Finally the results of this project are integrated into a matrix system which will enable us to select the most effective mix of pollution abatement measures at the lowest costs. The result of the selected additional measures exceeding BAT and BEP shows that 17 pollutants will still violate the quality objectives.


1999 ◽  
Vol 39 (12) ◽  
pp. 133-140
Author(s):  
J. Y. Li ◽  
D. Banting

Storm water quality management in urbanized areas remains a challenge to Canadian municipalities as the funding and planning mechanisms are not well defined. In order to provide assistance to urbanized municipalities in the Great Lakes areas, the Great Lakes 2000 Cleanup Fund and the Ontario Ministry of the Environment commissioned the authors to develop a Geographic Information System planning tool for storm water quality management in urbanized areas. The planning tool comprises five steps: (1) definition of storm water retrofit goals and objectives; (2) identification of appropriate retrofit storm water management practices; (3) formulation of storm water retrofit strategies; (4) evaluation of strategies with respect to retrofit goals and objectives; and (5) selection of storm water retrofit strategies. A case study of the fully urbanized Mimico Creek wateshed in the City of Toronto is used to demonstrate the application of the planning tool.


2009 ◽  
Vol 2009 (6) ◽  
pp. 984-1006
Author(s):  
Karen Cowan ◽  
Earl Byron ◽  
Samuel Luoma ◽  
Theresa Presser ◽  
Gary Santolo ◽  
...  

1994 ◽  
Vol 74 (1) ◽  
pp. 59-66 ◽  
Author(s):  
B. T. Bowman ◽  
G. J. Wall ◽  
D. J. King

The risk of surface-water contamination by herbicides is greatest following application to cropland when the active ingredients are at the maximum concentration and the soil is the most vulnerable to erosion following cultivation. This study determined the magnitude of surface runoff losses of herbicide and nutrients at, and subsequent to, application. The first of three weekly 10-min, 2.6-cm rainfalls were simulated on triplicated 1-m plots (a set) on which corn had been planted and the herbicide (metolachlor/atrazine, 1.5:1.0) and fertilizer (28% N at 123 kg ha−1) had just been applied. Identical simulations were applied to two other adjacent plot sets (protected from rainfall) 1 and 2 wk following herbicide application. Runoff (natural, simulated) was monitored for soil, nutrient and herbicide losses. Concentrations of total phosphorus in surface runoff water and nitrate N in field-filtered samples were not significantly influenced by the time of the rainfall simulation but exceeded provincial water-quality objectives. Atrazine and metolachlor runoff losses were greatest from simulated rainfall (about 5% loss) immediately following application. Subsequent simulated rainfall usually resulted in < 1% herbicide runoff losses. Herbicide concentrations in all plot runoff samples exceeded provincial drinking-water quality objectives. Since herbicide surface transport is primarily in the solution phase (not via association with soil particles), water-management conservation technologies are the key to retaining these chemicals on cropland. Key words: Herbicide, runoff, rainfall simulation, partitioning, water quality


Sign in / Sign up

Export Citation Format

Share Document